Abstract:
System and method for performance characterization of multi configuration near eye displays includes: a mirror; a lamp; a beamsplitter; a collimating and reflective lens for collimating light reflected from the beamsplitter and reflecting it back towards an image sensor having a view finder; a field-of-view (FOV) aperture to project light from the lamp onto the DUT through the objective lens; a video viewfinder digital camera for capturing an virtual image of the DUT; a spectroradiometers for performing spectroradiometric measurements on a captured image of the defined measurement area to characterize the performance of the DUT; and a controller circuit for characterizing performance of the DUT based on the spectroradiometric measurements.
Abstract:
Alight receiving device is equipped with a first light receiving element which outputs a first output signal corresponding to an amount of received light, a temperature information acquisition unit which acquires temperature information of the first light receiving element, a generation unit which generates compensating information of the first output signal, based on first output signals and temperature information when power is supplied to the first light receiving element in a plurality of power supply conditions and stores the same in a storage unit, and a compensation unit which compensates the first output signal, based on the temperature information and the compensating information when the first output signal is output. Thus, even when temperature characteristics of an optical element are varied, the temperature characteristics are compensated highly accurately.
Abstract:
A fluorescence imaging system for imaging an object, the system includes a white light provider that emits white light, an excitation light provider that emits excitation light in a plurality of excitation wavebands for causing the object to emit fluorescent light, a component that directs the white light and excitation light to the object and collects reflected white light and emitted fluorescent light from the object, a filter that blocks light in the excitation wavebands and transmits at least a portion of the reflected white light and fluorescent light, and an image sensor assembly that receives the transmitted reflected white light and the fluorescent light.
Abstract:
The present disclosure relates to an apparatus embodied in order to correct efficiently changing of measured temperature value in a temperature sensor according to influence of irradiance. A radiosonde related an exemplary embodiment of the present disclosure includes a first temperature sensor; a second temperature sensor having higher emission ratio than the first temperature sensor; and a measuring unit in order to calculate corrected temperature value, but the radiosonde and the third temperature sensor are installed in a chamber before flying of the radiosonde, a first temperature change detected by the first temperature sensor by output light in a sunlight simulator and a second temperature change detected by the second temperature sensor are induces, compensation factors may be derived using the first temperature change, the second temperature change, and temperature value measured by the third temperature sensor.
Abstract:
A device for testing a lighting device including a plurality of light emitting diodes (LEDs) and an LED driver configured to drive the plurality of LEDs to emit light includes a camera configured to image a surface on which light output by the LED lighting device is incident, and generate image data corresponding to an output of the LED lighting device; and a controller configured to compare the image data with a reference condition, and in response to the output of the LED lighting device deviating from the reference condition, control the LED driver to modify brightness of at least a portion of the plurality of LEDs.
Abstract:
Aspects of the present disclosure relate to a security device, in particular, a multilayered security device. The multilayered security device includes a substrate layer having a first substrate. The substrate layer attaches to the product. The multilayered security device also includes a graphene layer. The graphene layer has a first continuous graphene sheet that is made of a monolayer of covalently-bonded carbon atoms. The graphene layer also forms, in response to exposure to a verification stimulus, a contrasting pattern with respect to an exposed substrate area from the substrate layer.
Abstract:
There is provided a focus detection apparatus including: microlenses; light reception units that receive light which is incident through the microlenses; waveguides that cause light, which is incident to the microlenses at a predetermined angle, to be received by the light reception units and that are provided between the microlenses and the light reception units; and a detection unit that detects focusing using output values from the light reception units.
Abstract:
There is provided a focus detection apparatus including: microlenses; light reception units that receive light which is incident through the microlenses; waveguides that cause light, which is incident to the microlenses at a predetermined angle, to be received by the light reception units and that are provided between the microlenses and the light reception units; and a detection unit that detects focusing output values from the light reception units.
Abstract:
The inventive concepts disclosed herein are generally directed to the use of a hand-held mobile computing device, such a smartphone or tablet, to interpret the results of a medical assay device. By controlling conditions like image placement and illumination and correcting for imperfect illumination, accurate results can be obtained with hand-held mobile computing device.
Abstract:
A method for capturing three-dimensional photographic lighting of a spherical lighting device is described. Calculation of boundaries of the spherical lighting device based on lighting properties of at least one light source in a set location of the spherical lighting device is performed. A mapping of multitude points of the spherical lighting device to three-dimensional vectors of at least one camera device using a logical grid is performed. A measurement of brightness of the logical grid of the spherical lighting device is performed. The method further comprises determining brightest grid point of the logical grid of the spherical lighting device, wherein the brightest grid point of the logical grid is measured within a region brightness of the spherical lighting device. The method further comprises calculating the region of brightness of the spherical lighting device based on the determined brightest grid point of the logical grid.