Abstract:
An optical measurement system for evaluating the surface of a substrate or the thickness and optical characteristics of a thin film layer overlying the substrate includes a light source for generating a light beam, a static polarizing element for polarizing the light beam emanating from the light source, and a measurement system for measuring the light reflected from the substrate location. The measurement system includes a static beam splitting element for splitting the light reflected from the substrate into s-polarized light and p-polarized light. The measurement system further includes two optical sensors for separately measuring the amplitude of the s-polarized light and the intensity of the p-polarized light. A control system analyzes the measured amplitude of the s-polarized light and the p-polarized to determine changes in the topography of substrate or changes in the thickness or optical characteristics of the thin film layer.
Abstract:
A micropolarimeter and ellipsometer for obtaining complete optical information of superficially illuminated specimens. A compact construction is designed to facilitate their use. To obtain the simultaneous surface measurement of all optical information from a specimen, the retarder of the micropolarimeter consists of a one-piece retarder array with at least one pixel group, in which the major axis orientations of the individual pixels are distributed over an angular range of 360°. This micropolarimeter can be integrated into the reflected light microscope of an ellipsometer. The result is a compact measurement unit.
Abstract:
Transmission light from a detection lens is directed to a polarization element as incident light. The polarization element is rotated, and the light is received and detected by an array-state light-receiving element, and the birefringence of the detection lens is calculated. The distance between a lens for radiating the diffusion light onto the detection lens and the detection lens itself can be optionally set. Observing the transmission image of the detection lens, the distance between the detection lens and the lens is determined. Thereby, it is possible to obtain optical elasticity interference fringes which at most are scarcely affected by optical distortions. In addition, a focusing magnification rate is most suitably set to match states of birefringence occurrence which are different in accordance with the detection lens or the placement thereof. A compensation optical system composed of a lens respectively has different focal distances f1 and f2 in the main scanning direction and in the subscanning direction, and can be added into a space between the radiation optical system and the detection lens. The light from the detection lens is substantially parallel.
Abstract:
An apparatus and method to determine the surface orientation of objects in a field of view is provided by utilizing an array of polarizers and a means for microscanning an image of the objects over the polarizer array. In the preferred embodiment, a sequence of three image frames is captured using a focal plane array of photodetectors. Between frames the image is displaced by a distance equal to a polarizer array element. By combining the signals recorded in the three image frames, the intensity, percent of linear polarization, and angle of the polarization plane can be determined for radiation from each point on the object. The intensity can be used to determine the temperature at a corresponding point on the object. The percent of linear polarization and angle of the polarization plane can be used to determine the surface orientation at a corresponding point on the object. Surface orientation data from different points on the object can be combined to determine the object's shape and pose. Images of the Stokes parameters can be captured and viewed at video frequency. In an alternative embodiment, multi-spectral images can be captured for objects with point source resolution. Potential applications are in robotic vision, machine vision, computer vision, remote sensing, and infrared missile seekers. Other applications are detection and recognition of objects, automatic object recognition, and surveillance. This method of sensing is potentially useful in autonomous navigation and obstacle avoidance systems in automobiles and automated manufacturing and quality control systems.
Abstract:
The state of polarization of an input light beam is tested by determining four components of a Stokes vector of the light. These correspond to components of the light in three polarization states, S.sub.1 : linear horizontal, S.sub.2 : linear at 45 degrees, S.sub.3 : right circularly polarized, and S.sub.0 the total power. It is not necessary to filter out these components directly and measure their powers. In accordance with this invention it is more convenient to measure the powers in three arbitrary polarization states that have known relationships to each other, and, also measure the total power. The actual Stokes vector components is calculated from this information. Conveniently, a device having three polarization beam splitting surfaces and a prism provides a novel way in which to obtain the necessary information from an input beam so that a set of equations can be solved to determine the state of polarization the input beam.
Abstract:
A polarimeter with a polarization state generator and a polarization state analyzer mounted together on a single rotary mount. This novel structure allows built-in alignment and synchronization of the polarization state analyzer and the polarization state generator. Because of this built-in alignment and synchronization, polarization properties of samples can be measured quickly, accurately, inexpensively, and reliably. The instrument can measure polarization properties of remote samples, without placing the sample inside the instrument. The surrounding lenses and mirrors are designed in such a way that light leaving the instrument will pass through the polarization state generator and light returning into the instrument will pass through the polarization state analyzer and onto a photodetector. Samples can be measured directly in reflection or in small-angle backscatter; or they can be measured in double-pass transmission with the addition of a mirror or retroreflector.
Abstract:
In testing a sample of an optically active substance, the sample is irradiated with polarized electromagnetic radiation and the intensity of radiation scattered from the sample in a given direction is detected. The state of polarization of the incident radiation from which the detected radiation is derived is modulated, preferably by alternating it between right and left circular polarization, to cause a periodic variation of the detected intensity, and a signal related to this variation is derived.