Abstract:
The present invention relates to a field emission lighting arrangement, comprising an anode structure at least partly covered by a phosphor layer, an evacuated envelope inside of which an anode structure is arranged, and a field emission cathode, wherein the field emission lighting arrangement is configured to receive a drive signal for powering the field emission lighting arrangement and to sequentially activate selected portions of the phosphor layer for emitting light. The same control regime may be applied to an arrangement comprising a plurality of field emission cathodes and a single field emission anode. Advantages with the invention includes increase lifetime of the field emission lighting arrangement.
Abstract:
This light source 1 is provided with a luminescent cylinder 3A housing a luminescent part 2 to generate light; a light guide cylinder 3B connected to the luminescent cylinder 3A on a one end side, and configured to guide the light generated by the luminescent part 2, to an exit window 4 provided on the other end side; and a cylindrical reflective cylinder 9 inserted and fixed between the exit window 4 of the light guide cylinder 3B and a portion connecting the luminescent cylinder 3A and the exit window 4, and having an inner wall surface as a reflective surface 9a to reflect the light.
Abstract:
A light emission apparatus (10) and a manufacturing method thereof are provided. The light emission apparatus includes a light emission base body (13) and a metal layer (14) with metal microstructure. The metal layer is set on the surface of the light emission base body. The material of light emission base body is transparent ceramic Y3Al5O12:Tb. By setting a metal layer with metal microstructure on the light emission base body, the interface between the metal layer and the light emission base body could form a surface plasmon under the cathode ray (16). The spontaneous emission of the transparent ceramic and the emission efficiency of the light emission base body could be enhanced by the effect of surface plasmon.
Abstract:
A field emission anode plate (1), a field emission light source and a manufacturing method for the light source are provided. The field emission anode plate comprises a transparent ceramic base (10) and an anode conductive layer (11) provided on the surface of the transparent ceramic base which can be excited to produce light by cathode rays. The field emission light source comprises the field emission anode plate, a field emission cathode plate (2) and a supporter (3). The field emission cathode plate comprises a substrate (20) and a cathode conductive layer (21) provided on the surface of the substrate. The anode conductive layer and the cathode conductive layer are arranged opposite to each other, and two ends of the supporter are hermetically connected to the field emission anode plate and the field emission cathode plate respectively, thus the field emission anode plate, the field emission cathode plate and the supporter constitute a vacuum chamber. As the transparency and electron-impact resistance are improved and the corrosion and wear resistance properties are increased, the field emission anode plate is low-cost with luminance uniformity, and the field emission light source also exhibits high luminance intensity, luminance uniformity and a long service life.
Abstract:
In order to provide a phosphor for a low-voltage electron beam and a vacuum fluorescent display apparatus in which the phosphor is used, a deposition layer is formed on a surface of a main body of a phosphor shown by the following chemical formula (1), the deposition layer being a plurality of oxide layers sequentially deposited on the surface of the phosphor main body. The phosphor for a low-voltage electron beam contains no cadmium, but has exceptional high-temperature exposure characteristics, as well as prolonged service life and higher brightness. Ca1-xSrxTiO3:Pr,M (1) where M is at least one element selected from Al, Ga, In, Mg, Zn, Li, Na, K, Gd, Y, La, Cs, and Rb; and 0≦x≦1.
Abstract translation:为了提供低电压电子束的荧光体和使用荧光体的真空荧光显示装置,在由下列化学式(1)表示的荧光体的主体的表面上形成沉积层, ,沉积层是顺序沉积在荧光体主体的表面上的多个氧化物层。 用于低电压电子束的荧光体不含镉,但具有特殊的高温曝光特性,以及延长的使用寿命和更高的亮度。 Ca1-xSrxTiO3:Pr,M(1)其中M是选自Al,Ga,In,Mg,Zn,Li,Na,K,Gd,Y,La,Cs和Rb中的至少一种元素; 和0 @ x @ 1。
Abstract:
Provided is a compact ultraviolet irradiation apparatus which is capable of emitting ultraviolet radiation with high efficiency.This ultraviolet irradiation apparatus includes, in a vessel, a semiconductor multi-layered. film element and an electron beam irradiation source for irradiating the semiconductor multi-layered film element with an electron beam, the vessel being hermetically sealed to have a negative internal pressure and having an ultraviolet transmitting window. Furthermore, the semiconductor multi-layered film element includes an active layer having a single quantum well structure or a multi quantum well structure of InxAlyGa1-x-yN (0≦x
Abstract translation:提供一种能够高效率地发射紫外线的小型紫外线照射装置。 该紫外线照射装置在容器中包括多层的半导体。 膜元件和用于用电子束照射半导体多层膜元件的电子束照射源,容器被密封以具有负的内部压力并具有紫外线透过窗口。 此外,半导体多层膜元件包括具有单一量子阱结构或In x Al y Ga 1-x-y N(0&nlE; x <1,0
Abstract:
Disclosed are a semiconductor apparatus and a manufacturing method thereof. The manufacturing method of the semiconductor apparatus includes: forming a semiconductor chip on a semiconductor substrate; adhering a carrier wafer with a plurality of through holes onto the semiconductor chip; polishing the semiconductor substrate; forming a first via hole at the rear side of the polished semiconductor substrate; forming a first metal layer below the polished semiconductor substrate and at the first via hole; and removing the carrier wafer from the polished semiconductor substrate.
Abstract:
A triode-type field emission device and method of manufacturing the same, suitable for use in screen print process of curved or planar substrate, comprising the following steps: firstly, form a cathode and a gate on a cathode substrate at the same time by means of screen printing, and a gap is located between gate and cathode, to avoid short circuit or interference; next, form a hedgehog-shape field emission layer on at least said cathode; then, form a transparent conductive layer and a light emitting layer sequentially on an anode substrate; and finally, dispose cathode substrate and anode substrate in parallel and spaced apart, and package them into a triode-type field emission device. Bias of cathode and gate can be controlled to achieve local adjustment of light. Also, gate may serve as an emitter, to increase field emission efficiency and its service life.
Abstract:
In a deep-ultraviolet tight source includes sapphire substrate, a wide band gap semiconductor layer having a wavelength smaller than 300 nm, formed on the sapphire substrate, and en electron beam source for irradiating the wide band gap semiconductor layer with an electron beam. The wide band gap semiconductor layer is configured to be irradiated with the electron beam to emit deep-ultraviolet light through the sapphire substrate. A thickness t1 of the sapphire substrate satisfies: t1≧α·E3 where B s an energy of the electron beam (keV); and α is 1 μm/(keV)3.
Abstract:
The cavity 102 defines an empty volume formed in the insulator 108 has its walls defined by the insulator 108 and may extend through either (or both) the first electrode 106 or the second electrode 104, in which case the first electrode and/or second electrode also define the walls of the cavity 102. The cavity 102 is preferably cylindrical and has a diameter of 0.1 μm-1 mm. More preferably, the diameter ranges from 0.1 μm-500 μm, 1 μm-100 μm, or 100 μm-500 μm. The cavity 102 will be filled with a gas that contacts the cavity walls, fills the entire cavity 102 and is selected for its breakdown voltage or light emission properties at breakdown. Light is produced when the voltage difference between the first electrode 106 and the second electrode 104 creates an electric field sufficiently large to electrically break down the gas (nominally about 104 V-cm). This light escapes from the microcavity 102 through at least one end of the cavity 102.