Abstract:
In a single-sided paper phenolic resin copper-clad laminate composed of a phenolic resin impregnated paper base having copper foils laminated on and resists applied on the face side thereof, resists formed of the same material as the resists on the face side are applied also on the reverse side of the phenolic resin impregnated paper base, so that the face side and the reverse side match approximately with each other in thermal expansibility. The single-sided paper phenolic resin copper-clad laminate warps only slightly even when the peak temperature is raised to a degree suitable for lead-free solder in the reflow process for mounting electronic components.
Abstract:
The present invention is for providing a rigid-printed wiring board capable of preventing the burst or void phenomenon of a copper paste, and a production method of the rigid-printed wiring board. A rigid-printed wiring board comprising copper clad laminates with a paper phenol or a paper epoxy used as a base, wherein a through hole is provided in the vicinity of a via hole for finning the copper paste, is provided.
Abstract:
Biobased cross-linked compositions, methods of fabrication and structures, in particular biobased printed wiring boards using the compositions and methods of making the structures are described. Biobased materials such as lignin, crop oils, wood resins, tannins, and polysaccharides and combinations thereof are cross-linked, preferably using heat, a cross-linking agent, and an initiator. The materials fabricated have suitable properties for printed wiring boards which are made by impregnating a fiberglass or biobased cloth with an admixture of the biobased material, cross-linking agent and initiator which is processed by conventional methods to produce a printed wiring board.
Abstract:
A method of applying an edge electrode pattern to a touch screen panel including printing an edge electrode pattern on decal paper; applying a cover coat over the electrode pattern; removing the decal paper; and transferring the edge electrode pattern to a touch screen panel. A decal to be used in accordance with this method.
Abstract:
A method and materials for drilling through-holes in printed circuit boards with a drilling tool is disclosed. The method involves the use of a lubricating entry material placed on the top surface of a stack of printed circuit boards and a lubricating backup board placed beneath the bottom surface of the stack of printed circuit boards. The lubricating entry material has a core with skins attached on both sides by a lubricant/adhesive. Similarly, the backup board has a core with skins attached on both sides by a lubricant/adhesive. The skins are hard enough to support the top and bottom surfaces of the printed circuit boards and thereby reduce burring at the entry point and exit point of the through-hole. The lubricant/adhesive coats the drilling tool during the drilling operation to reduce friction and thereby reduce the temperature of the drilling tool.
Abstract:
An electrically functional adhesive transfer for use in the manufacture and/or the design of flexible membrane circuits. Electrical circuit elements, instead of being printed directly upon polyester film substrates, are printed upon a carrier sheet. A pressure sensitive adhesive is applied over the exposed surfaces of the printed circuit pattern on the carrier sheet and covered by a release paper. The circuit later is applied to any desired substrate by peeling away the release paper and mounting the circuit by means of the pressure sensitive adhesive. The carrier sheet typically is peeled away after the circuit is adhesively bonded to the substrate. The carrier sheet desirably is transparent or translucent in order to facilitate visual alignment of the circuit pattern with the substrate to which it is being bonded.
Abstract:
A pre-preg substrate, having a low dielectric constant and containing a substantially uniformly distributed hollow-glass-microsphere filler, and method for making the same. The pre-preg substrate is treated with impregnation and lamination techniques to form a laminate with a low dielectric constant, and good mechanical and electrical properties, suitable as a base material for surface mounted devices in high performance circuits. Improved pre-pregs for making high performance circuit boards and for making surface mounted integrated circuits. Improved high performance circuit boards for making surface mounted integrated circuits.
Abstract:
An electric contact for connecting a conductive system present on an insulating substrate, in particular for automobile windshields, in which the conductive system is connected via a conductive path with an electric mating contact. A moisture-resistant electric contact which is easy to manufacture and can be universally used consists of a conductive path which is disposed directly on a support substrate as a path-shaped conductive layer on which an electric connecting line of the conductive system is located.
Abstract:
A laminated board lined with thermally and electrically conductive material, which comprises:(a) a prepreg sheet formed of an alumina paper made from a mixture of alumina fibril, as the principal component, having a fiber diameter of 100 microns or smaller and a fiber length which is ten times or more as long as the fiber diameter, and microfibrillar organic fiber as a binding agent, and a thermosetting resin; and(b) an electrically conductive material in foil such as copper or aluminum bonded to said prepreg sheet.
Abstract:
A prepreg useful as the core in flame resistant cooper clad, composite, printed circuit boards is made by impregnating a porous substrate with an impregnant containing: either a brominated epoxy or epoxy resin and reactive flame retarding additive containing bromine and phenolic hydroxyl groups (e.g., tetrabromobisphenol A), phenolic novolac oligomer as curing agent, unsaturated epoxidized oil, and optionally, a suitable catalyst; and then heating the impregnated substrate to the "B"-stage.