Abstract:
Proposed is a lighting device (100), comprising LEDs (130) mounted on a transparent substrate (110), provided with a transparent electrically conductive layer (120) and a contact pad (140). The contact pad has a second part (142), extending away from a first part (141), for further reducing the current density in the conductive layer (120). This is advantageous for making the lighting device robust to large power dissipation, especially under high current testing conditions. Moreover, as the voltage drop over transparent conductive layer is reduced, the efficiency of the lighting device is increased.
Abstract:
A display device comprises a metallic wiring formed on an insulating substrate, an inorganic insulating film formed on the metallic wiring, an organic resin film formed on the inorganic insulating film, a transparent conductive film formed in a portion on the metallic wiring where the inorganic insulating film and the organic resin film are removed, a connection terminal formed in a region for mounting a driving IC external to the display region on the insulating substrate, and a bump of the driving IC connected to the connection terminal by an anisotropic conductive film in order to supply a signal to the display region. The region for mounting a driving IC includes a region where the inorganic insulating film and the organic resin film are formed on the metallic wiring and a region where the inorganic insulating film and the organic resin film are removed from the metallic wiring.
Abstract:
A touch-sensitive device includes a transparent substrate, a touch-sensing structure, a decorative layer, a trace layer, a passivation layer and a sheltering layer. The touch-sensing structure is disposed on the transparent substrate and located in a touch-sensitive region. The decorative layer is disposed on the transparent substrate and located in a non-touch-sensitive region, and the trace layer is disposed on the decorative layer. The passivation layer is disposed on the transparent substrate and at least covers the touch-sensing structure and the trace layer. The sheltering layer is disposed at least on the passivation layer and located in the non-touch-sensitive region.
Abstract:
A method of forming metallic connector patterns for solar cells, whereby an embosser having raised features shaped in the form of a metallic connector pattern is used to attach a portion of a metallic foil to a transparent conductive layer formed on a top transparent surface of a solar cell structure. The raised surfaces of the embosser press the metallic foil portion against the transparent conductive layer. Heat and pressure directed to the metallic foil portion attach the metallic foil portion to the underlying transparent conductive layer, and then the rest of the metallic foil, which is not attached to the transparent conductive layer, is removed.
Abstract:
A space-efficient substantially transparent mutual capacitance touch sensor panel can be created by forming columns made of a substantially transparent conductive material on one side of a first substantially transparent substrate, forming rows made of the substantially transparent conductive material on one side of a second substantially transparent substrate, adhering the two substrates together with a substantially transparent adhesive, bringing column connections down to the second substrate using vias, and routing both the column and row connections to a single connection area on the second substrate. In addition, in some embodiments some of the row connections can be routed to a second connection area on the second substrate to minimize the size of the sensor panel.
Abstract:
A photosensitive material for forming a conductive film having a support, a silver salt-containing emulsion layer over the support, and one or more optional layers formed over the support or the silver salt-containing emulsion layer side of the support, wherein any one of the silver salt-containing emulsion layer or the optional layer(s) contains conductive fine particles and a binder, and the ratio by mass of the conductive fine particles to the binder (the conductive fine particles/the binder) is from 1/33 to 1.5/1.
Abstract:
A method for fabricating thin DITO or SITO touch sensor panels with a thickness less than a minimum thickness tolerance of existing manufacturing equipment. In one embodiment, a sandwich of two thin glass sheets is formed such that the combined thickness of the glass sheets does not drop below the minimum thickness tolerance of existing manufacturing equipment when thin film process is performed on the surfaces of the sandwich during fabrication. The sandwich may eventually be separated to form two thin SITO/DITO panels. In another embodiment, the fabrication process involves laminating two patterned thick substrates, each having at least the minimum thickness tolerance of existing manufacturing equipment. One or both of the sides of the laminated substrates are then thinned so that when the substrates are separated, each is a thin DITO/SITO panel having a thickness less than the minimum thickness tolerance of existing manufacturing equipment.
Abstract:
A layer of transparent conductive material is disposed on a surface of a substrate. Further layers of conductive material are deposited on the layer of transparent conductive material or on an opposite surface of the substrate. The layers are selectively etched to yield a layout of pads for mounting electrical components and conductive traces forming an electrical circuit.
Abstract:
A method for fabricating thin DITO or SITO touch sensor panels with a thickness less than a minimum thickness tolerance of existing manufacturing equipment. In one embodiment, a sandwich of two thin glass sheets is formed such that the combined thickness of the glass sheets does not drop below the minimum thickness tolerance of existing manufacturing equipment when thin film process is performed on the surfaces of the sandwich during fabrication. The sandwich may eventually be separated to form two thin SITO/DITO panels. In another embodiment, the fabrication process involves laminating two patterned thick substrates, each having at least the minimum thickness tolerance of existing manufacturing equipment. One or both of the sides of the laminated substrates are then thinned so that when the substrates are separated, each is a thin DITO/SITO panel having a thickness less than the minimum thickness tolerance of existing manufacturing equipment.
Abstract:
Proposed is a lighting device (100), comprising LEDs (130) mounted on a transparent substrate (110), provided with a transparent electrically conductive layer (120) and a contact pad (140). The contact pad has a second part (142), extending away from a first part (141), for further reducing the current density in the conductive layer (120). This is advantageous for making the lighting device robust to large power dissipation, especially under high current testing conditions. Moreover, as the voltage drop over transparent conductive layer is reduced, the efficiency of the lighting device is increased.