Abstract:
Disclosed are a method and a structure of penetration and combination for a flexible circuit board with a hinge assembly. A pre-formed flexible circuit board is processed by taking a pre-folding line as a center line to fold a connection section of the flexible circuit board toward the terminal distribution section. Then, the connection section is rolled in a direction toward the terminal distribution section so as to make the connection section forming a rolled body. The rolled body is then put through the bore of the hinge assembly to have the rolled body completely extend through the bore of the hinge assembly so that the extension section of the flexible circuit board is positioned in the bore of the hinge assembly and the first end and the second end are respectively located at opposite sides of the bore of the hinge assembly.
Abstract:
Disclosed is a flexible circuit cable with at least two bundled wire groups. The circuit cable has first and second ends respectively connected to first and second connection sections. The circuit cable includes a cluster section, which is formed of a plurality of cluster wires formed by slitting the circuit cable, in an extension direction of the cable, at a predetermined cut width. The cluster section includes at least two independent bundles, which are formed by dividing the cluster wires of the circuit cable into different signal groups according to electrical signals transmitted therethrough. Bundling members are used to the cluster wires of the independent bundles according to predetermined bundling modes. Further, the circuit cable has a surface forming a shielding conductive layer for electromagnetic interference protection and impedance control for internal signals of the circuit cable.
Abstract:
A driving board folding machine comprises a machine housing, a movable table and one or more pre-folding stations for holding an unfolded flexible circuit and a circuit housing. When the driving board folding machine is activated, the one or more pre-folding stations are moved to a folding station located within the machine housing and the flexible circuit is folded and inserted within the circuit housing. The driving board folding station is able to comprise multiple pre-folding stations on one or more sides of the movable table. A holding pin holds the flexible circuit in place while a forming press moves in order to preform the flexible circuit, fold the flexible circuit and move the circuit housing to insert the flexible circuit into the housing.
Abstract:
A cochlear implant device includes a deformable and stretchable flexible strip composed of a biological compatible material and positioned about a longitudinal axis so as to form a spiral. The implant device has a plurality of conductive strips with electrode windows formed so as to expose a segment of each conductive strip. A density of the electrode windows is sufficient to monitor a distance of the flexible strip from a non-conductive tissue of a patient in a 360 degree field of view about the longitudinal axis. A method of inserting a cochlear implant includes providing a multi-joint robot comprised of a series of actuator units, guiding the multi-joint robot into an inner ear of a patient, monitoring the position of the multi-joint robot relative to a non-conductive portion of the patient; and applying current to the multi joint robot so as to adjust the position of the actuator units.
Abstract:
According to the electronic apparatus and cellular phone of the present invention, in an optical waveguide forming body of a flexible cable, an air layer is provided in a deforming section which experiences bending deformation as a result of the movement of a second body relative to a first body (either a pivoting or sliding movement), and the position of this air layer becomes located on the outer circumferential side of a core when the deforming section undergoes bending deformation. As a result of this, it is possible to ensure sufficient flexibility and to also achieve a sufficient improvement in the folding endurance of the core portion for this optical waveguide forming body to be utilized in practical applications. Moreover, it is possible to suppress light loss and achieve high-speed, large-capacity transmissions even when the optical waveguide forming body of a flexible cable experiences bending deformation due to the relative movement of the second body relative to the first body.
Abstract:
An electronic device may be provided that has flexible circuitry such as spiral wrapped flexible circuitry. Flexible circuitry may be connected to one or more sides of an electronic component such as rigid printed circuit board or coupled between a rigid printed circuit board an another device component. Flexible circuitry may include an adhesive strip for maintaining a spiral wrap configuration of the flexible circuitry. An adhesive strip may be covered by a removable protective liner during manufacturing of an electronic device so that the flexible circuitry may be tested in a flat, unrolled configuration prior to installation in the electronic device. Flexible circuitry may include a conductive layer configured to form an electromagnetic shield for an electronic component mounted in the spiral wrap. Flexible circuitry may be wrapped around an elongated support member that is mounted along an edge of the electronic component.
Abstract:
A bundled flexible flat circuit cable includes a flexible substrate that forms at least one cluster section having an end forming at least one first connection section and an opposite end forming at least one second connection section. Both the first and second connection sections or one of the first and second connection sections form a stack structure. The flexible substrate can be of a structure of single-sided or double-sided substrate and may additionally include an electromagnetic shielding layer. A bundling structure is provided to bundle the cluster section at a predetermined location to form a bundled structure. The bundling structure can be made of a shielding material, an insulation material, or a combination of shielding material and insulation material.
Abstract:
A method for forming a conductive film structure is provided, which includes providing a flexible insulating substrate, forming a conductive film overlying the flexible insulating substrate, patterning the conductive film to form a plurality of micro-wires overlying the flexible insulating substrate, wherein the micro-wires are extended substantially parallel to each other, forming an insulating layer overlying the flexible insulating substrate and the micro-wires, and winding or folding the flexible insulating substrate along an axis substantially parallel to an extending direction of the micro-wires to form a conducting lump.
Abstract:
To provide a mobile terminal device that can eliminate influence of static electricity upon signal lines of a signal-line flexible board that is placed through a connecting unit that connects two casings to be able to overlie one another. In the mobile terminal device, one of the casings and the other casing are connected through a connecting unit to be able to overlie one another, and a signal-line flexible board that connects circuit boards housed in one of the casings and the other casing, respectively, is placed through the connecting unit. The mobile terminal device includes a pair of frame-grounded flexible boards that are formed wider than the signal-line flexible board to have a conductor pattern frame grounded, and sandwich both outer surfaces of the signal-line flexible board therebetween.
Abstract:
A pop-up camera and a mobile phone including the same, the camera being insertable in and protrudale from the main body of the mobile phone when a user uses the camera, and a flexible printed circuit board (FPCB) that provides a stable electrical connection between a camera part and a main board of the mobile phone stably when the camera is protruded from the main body of the mobile phone or rotates.