Abstract:
A first substrate has a plurality of bumps and a second substrate has a plurality of openings at positions in registration with the plurality of bumps when the first and second substrates are placed one on top of the other in a confronting manner. The first and second substrates are put together by fusing a sealing wall formed on the second substrate, to hermetically seal an electronic device lying on the first substrate therein. Gas that may be generated upon fusing of the sealing wall can be effectively removed through the openings in the second substrate.
Abstract:
A method of manufacturing a printed wiring board, enabling insertion components to be mounted on both sides thereof, including: a) providing first and second copper-clad laminates, including plated through-holes thereon; b) hot-pressing the laminates with each other and a first prepreg bonding sheet therebetween, so that the through-holes are closed by the prepreg to form non-through holes; c) laminating a second prepreg on each of the surfaces of the composite laminate; d) covering the opening of respective non-through holes with a heat resistant resin film; e) laminating one-side copper-clad laminate on each of the surfaces of the product of (d), with the copper side out, followed by hot-pressing; f) etching the copper sides to form outer layer circuit patterns; g) removing the base material layers covering the openings of the non-through holes; and h) removing the heat resistant resin films of the openings of the non-through holes.
Abstract:
Embodiments of substrate in accordance with the present invention provide interconnect cavities for direct interconnection between SMT components and internal conductive inner layers, as well as surface outer layers. Interconnect cavities eliminate the need for through hole vias and require less substrate surface area and internal volume. Each interconnect cavity comprises a cavity extending from the substrate surface to an adjacent internal conductive inner layer directly beneath the cavity. The cavity extends through a conductive outer layer on the substrate surface. The cavity has a conductive liner interconnected with the outer layer and the inner layer forming a cup-shaped conductive depression interconnecting the outer layer with the inner layer.
Abstract:
A multilayered substrate for a semiconductor device, which has a multilayered substrate body formed of a plurality sets of a conductor layer and an insulation layer, and having a face for mounting a semiconductor element thereon and another face for external connection terminals, the face for mounting a semiconductor device being provided with pads through which the substrate is connected to a semiconductor element to be mounted thereon, and the face for external connection terminals being provided with pads through which the substrate is connected to an external electrical circuit, wherein a reinforcing sheet is respectively joined to the face for mounting a semiconductor element thereon and the face for external connection terminals of the multilayered substrate body.
Abstract:
A semiconductor component includes a substrate, bonding pads on the substrate, and external contacts bonded to the bonding pads. Exemplary external contacts include solder balls, solder bumps, solder columns, TAB bumps and stud bumps. Preferably the external contacts are arranged in a dense array, such as a ball grid array (BGA), or fine ball grid array (FBGA). The component also includes a polymer support member configured to strengthen the external contacts, absorb forces applied to the external contacts, and prevent separation of the external contacts from the bonding pads. In a first embodiment, the polymer support member comprises a cured polymer layer on the substrate, which encompasses the base portions of the external contacts. In a second embodiment, the polymer support member comprises support rings which encompass the base portions of the external contacts. In either embodiment the polymer support member transfers forces applied to the external contacts away from the interface with the bonding pads, and into the center of the contacts.
Abstract:
A surface mountable electronic device includes a body with a first surface for mounting the device. The first surface has recessed portions therein. Electrical contacts are provided in the first surface. The electrical contacts include first portions that form at least a portion of at least one inner surface of said recessed portions.
Abstract:
Packaged microelectronic devices, methods of manufacturing packaged microelectronic devices, and method of mounting packaged microelectronic devices to printed circuit boards. One embodiment can include a die, an interposer substrate, a solder-ball, and a dielectric compound. The die can have an integrated circuit and at least one bond-pad coupled to the integrated circuit. The interposer substrate is coupled to the die and can have at least one ball-pad electrically coupled to the bond-pad on the die. The interposer substrate can also have a trace line adjacent to the ball-pad, and a solder-mask having an opening over the ball-pad. The solder-ball can contact the ball-pad in the opening. The dielectric compound can insulate the ball-pad and the solder-ball from an exposed portion of the adjacent trace line in the opening.
Abstract:
Typically, primary electrical connection between a semiconductor chip and an external solder ball contact on a Ball Grid or Chip Scale Package is by way of a via extending through a dielectric substrate. The aspect ratio between via diameter and depth is critical for reliable and high yield solder ball attachment during printed circuit board assembly. Excellent ball adherence and reliability of BGA solder ball contacts is achieved through controlling the aspect ratio of the substrate vias by partially plating a solid solderable conductor core in each via. An improved via structure is disclosed wherein the depth of the viva is reduced without the negative effects of alternate methods, such as thinner substrates, or wider vias.
Abstract:
Temporary connections to spring contact elements extending from an electronic component such as a semiconductor device are made by urging the electronic component, consequently the ends of the spring contact elements, vertically against terminals of an interconnection substrate, or by horizontally urging terminals of an interconnection substrate against end portions of the spring contact elements. A variety of terminal configurations are disclosed.
Abstract:
A BGA test socket for use in standard testing and burn-in testing of BGA dies and method for testing such dies is disclosed wherein a die contact insert made of silicon or ceramic using standard IC fabrication technology is used. Through using such an insert, even small scale (pitch) BGA dies can be reliably tested including chip scale packaged (“CSP”) BGA dies. Furthermore, using such an insert allows a conventional socket to be adapted for use with a wide variety of both BGA dies and other varieties. A method for using the device is disclosed which overcomes current static electricity problems experienced in testing CSP BGA dies through closing the test socket before removing the die deposit probe.