Abstract:
A semiconductor substrate includes: 1) a first dielectric structure having a first surface and a second surface opposite the first surface; 2) a second dielectric structure having a third surface and a fourth surface opposite the third surface, wherein the fourth surface faces the first surface, the second dielectric structure defining a through hole extending from the third surface to the fourth surface, wherein a cavity is defined by the through hole and the first dielectric structure; 3) a first patterned conductive layer, disposed on the first surface of the first dielectric structure; and 4) a second patterned conductive layer, disposed on the second surface of the first dielectric structure and including at least one conductive trace. The first dielectric structure defines at least one opening to expose a portion of the second patterned conductive layer.
Abstract:
In a method for manufacturing a multilayer substrate, first, a via hole is formed in a first insulating layer and a second insulating layer and filled with conductive paste. Subsequently, the first insulating layer and the second insulating layer are stacked on each other. Next, the conductive paste is cured to form a via conductor while the first insulating layer and the second insulating layer are integrated through thermal pressing. Then, a penetrating hole that penetrates the via conductor in the laminating direction is formed.
Abstract:
A method of manufacturing a wiring substrate includes: preparing a laminated plate of a metal layer and an insulating layer; adhering the laminated plate to a first support body facing the metal layer; and forming a first wiring layer with vias extending through the insulating layer and first pads exposed from a first surface of the insulating layer. The method also includes: separating a multilayer structure including the metal, insulating, and first wiring layer from the first support body; adhering the multilayer structure to a second support body facing the first wiring layer; removing the metal layer; forming a plurality of second wiring layers including second pads connected to the vias and exposed from a second surface of the insulating layer opposite the first surface; and separating the insulating, the first wiring, and the plurality of second wiring layers from the second support body, to obtain the wiring substrate.
Abstract:
The present invention provides a multilayer circuit board that includes a plurality of resin layers, conductive wiring layers, and via-hole conductors. Each of the resin layers includes a resin sheet containing a resin and a conductive wiring layer disposed on at least one surface of the resin sheet. The via-hole conductors contain an intermetallic compound having a melting point of 300° C. or more produced by a reaction between a first metal composed of Sn or an alloy containing 70% by weight or more Sn and a second metal composed of a Cu—Ni alloy or a Cu—Mn alloy. The second metal has a higher melting point than the first metal.
Abstract:
In a conventional electronic device and a method of manufacturing the same, reduction in cost of the electronic device is hindered because resin used in an interconnect layer on the solder ball side is limited. The electronic device includes an interconnect layer (a first interconnect layer) and an interconnect layer (a second interconnect layer). The second interconnect layer is formed on the undersurface of the first interconnect layer. The second interconnect layer is larger in area seen from the top than the first interconnect layer and is extended to the outside from the first interconnect layer.
Abstract:
A flexible multilayer substrate includes a multilayer body including a plurality of laminated resin layers. The multilayer body includes an innermost surface, which is a surface on an inner side when the substrate is bent, and an outermost surface, which is a surface on an outer side when the substrate is bent. Each of the plurality of resin layers includes a skin layer on one surface. Lamination of the multilayer body includes a skin layer joint plane at one location at a central portion in the thickness direction, and the skin layer and other surface come in contact with each other at another location along the central portion in the thickness direction. A skin layer joint plane is arranged on a side closer to the innermost surface than a central plane in the thickness direction of the multilayer body.
Abstract:
In a conventional electronic device and a method of manufacturing the same, reduction in cost of the electronic device is hindered because resin used in an interconnect layer on the solder ball side is limited. The electronic device includes an interconnect layer (a first interconnect layer) and an interconnect layer (a second interconnect layer). The second interconnect layer is formed on the undersurface of the first interconnect layer. The second interconnect layer is larger in area seen from the top than the first interconnect layer and is extended to the outside from the first interconnect layer.
Abstract:
A wiring substrate includes a core portion and a wiring portion. The core portion includes a wiring layer and an organic resin core substrate. The wiring portion includes wiring layers and organic resin insulative layers. The wiring layer of the core portion is formed in a state in which the organic resin core substrate is supported by a support body. The wiring layers of the wiring portion are formed in a state in which the organic resin core substrate is adhered to a support body and the wiring layer of the core portion faces toward the support body.
Abstract:
A multilayer substrate includes a plurality of stacked thermoplastic resin layers each including an in-plane conductive pattern provided on one principal surface thereof and an interlayer conductive portion arranged to penetrate through the thermoplastic resin layer in a thickness direction. The plurality of thermoplastic resin layers include a first thermoplastic resin layer and a second thermoplastic resin layer, a stacking direction of which is inverted with respect to a stacking direction of the first thermoplastic resin layer. The second thermoplastic resin layer is thicker than the first thermoplastic resin layer. One end in the thickness direction of the interlayer conductive portion provided in the second thermoplastic resin layer is connected with the interlayer conductive portion of the thermoplastic resin layer adjacent to the second thermoplastic resin layer in the thickness direction such that the in-plane conductive pattern is not interposed therebetween.
Abstract:
The present invention provides a multilayer circuit board that includes a plurality of resin layers, conductive wiring layers, and via-hole conductors. Each of the resin layers includes a resin sheet containing a resin and a conductive wiring layer disposed on at least one surface of the resin sheet. The via-hole conductors contain an intermetallic compound having a melting point of 300° C. or more produced by a reaction between a first metal composed of Sn or an alloy containing 70% by weight or more Sn and a second metal composed of a Cu—Ni alloy or a Cu—Mn alloy. The second metal has a higher melting point than the first metal.