Abstract:
A method for fabricating a printed circuit board assembly comprising a via, wherein the method inhibits the flow of molten solder into the via during a wave soldering step, thereby preventing heat transfer that might otherwise degrade a solder joint at a top pad that is thermally coupled to the via. The method comprises the steps of: (1) fastening a bottom component to the bottom surface of the circuit board by a screening and reflow of solder paste that also generates a solder plug in the via; (2) fastening top components to the top surface of the circuit board by a screening and reflow of solder paste, wherein the top components comprise ball grid arrays and other surface mount devices that are to be affixed to pads which are connected to vias; and (3) wave soldering the bottom surface to affix additional components onto the circuit board, such as pin-in-hole components placed on the top surface. The solder plug formed in the via during the first step prevents molten solder from flowing into the via during the subsequent wave soldering step, thereby inhibiting heat transfer from the molten solder to the solder joint at the top pad.
Abstract:
The present invention provides a packaged substrate which has a superior positioning accuracy of wiring formed on a circuit substrate made of ceramics, and a conductive pattern with a thick film and yet a fine pattern. On a surface of flexible base member made of plastic, fine grooves are formed in a pattern corresponding to a first conductive pattern so that a cavity face is produced. Conductive paste is filled and into the grooves on this cavity face, and then dried. The cavity face and a circuit substrate are pasted with each other by applying predetermined heat and pressure. A pattern of the dried conductive paste is transcribed onto the circuit substrate, and then the first conductive pattern is formed by firing. A first ball solder is coupled with a second conductive pattern which is coupled to the first conductive pattern through an electrode in a through-hole of the circuit substrate.
Abstract:
A via for an electronic assembly. The assembly includes a substrate which has a via hole. The via hole is filled with a conductive material that extends across a diameter of the hole. The via hole can be filled by reflowing a solder ball that is attached to an outer surface of the substrate. The substrate may be part of a multi-layered integrated circuit package, wherein the vias couples internal routing layers with external contacts of the package. The filled vias can withstand extended thermal life cycles of the package.
Abstract:
A package for power converters in which a multilayers circuits board holds the components. The winding of the magnetic elements are incorporated in the multilayers circuit board. The top and some portion of the bottom layer are also support for electronic components. Some of the components are placed on the top layer, which may not be utilized for magnetic winding, reducing the footprint of the magnetic elements to the footprint of the magnetic core. The power dissipating devices placed on pads which have a multitude of copper coated via connecting the top to bottom layers. Through these via the heat is transferred from the power devices to the other side of the PCB. In some of the embodiment of this invention the heat can be further transferred to a metal plate connected to the multilayers circuit board via a thermally conductive insulator. The baseplate has cutouts or cavities to accommodate the magnetic cores. A thermally conductive is placed between the magnetic core and the metal plate on the bottom of the cavity.
Abstract:
A ball grid array package (BGA) according to the present invention has an interposer between a bond pad on the lower surface of the substrate and the solder ball. The interposer has a conductive portion in contact with the bond pad surrounded by a nonconductive or insulating portion. The conductive portion in contact with the bond pad is sufficiently constrained from widening during a subsequent reflow process by the presence of the nonconductive or insulating portion. The contact with the bond pad is sufficiently small to allow traces to pass near the bond pad substantially directly en route to another bond pad. The nonconductive portion also prevents subsequently-applied encapsulant from coming in contact with and contaminating the bond pad. The elevated surface of the interposer, i.e. the surface of the interposer furthest from the bond pad, supports the solder ball, and is sufficiently wide to support the solder ball without allowing the solder ball to come in contact with the traces. The solder ball and the trace routing on the lower surface of the substrate is in different planes, thereby allowing a simplified trace routing, but retaining and even increasing rigidity of the structure and coplanarity of the solder balls.
Abstract:
A configuration of surface-mounted circuit assembly has four layers, namely, an integrated circuit device, an adhesive layer, a solder layer and the carrier board. The integrated circuit device is attached to the solder layer which sets on top of the carrier board, with the adhesive layer between the integrated circuit device and the solder layer. The carrier board has at least one via located beneath where the integrated circuit is located. The via is filled with solder such that the solder layer at which the integrated circuit device is situated is thermo-conductively connected to the back side of the carrier board. This configuration allows the integrated circuit device to be easily removed from the carrier board by the application of heat to the back side of the carrier board.
Abstract:
A semiconductor chip package and method of making same wherein the package comprises a ceramic substrate having two layers of thermally and electrically conductive material (e.g., copper) on opposing surfaces thereof, these layers thermally and electrically coupled by metal material located within holes provided in the ceramic. A semiconductor chip is mounted on one of these layers and the contact sites thereof electrically coupled to spaced circuitry which, in a preferred embodiment, Is formed simultaneously with both thermally conductive layers. Coupling of the circuitry to an external substrate (e.g., printed circuit board) is preferably accomplished using metallic spring clips. These clips are preferably soldered in position. A preferred metal for being positioned within the hole(s) is solder, one example being 10:90 tin: lead solder. The package as produced herein may further include two quantities of a protective encapsulant material located substantially on the upper portions thereof to protect the chip and circuitry. The preferred means for coupling the chip to the circuitry is to use a wire bonding operation.
Abstract:
A surface mount package for an electronic device has an array of solder shapes or structures projecting from the bottom surface of the package. The solder structures are cast in place on the package substrate using a wave solder process. The solder also fills via holes in the substrate at each solder structure site. An integrated circuit is bonded to the top surface of the substrate using a conventional tape automated bonding (TAB) process or other suitable bonding process. The preferred shape of the solder structure is a cone, but other shapes, including hemispheres, columns and pyramids can be produced using a mold with suitably shaped cavities. The mold is preferably as large as an entire substrate panel so that a large number of device sites can be processed simultaneously.
Abstract:
At least one grounding through hole filled with solder is provided in a printed wiring board near by a fixing hole through which a screw fixes the board to a frame, penetrating a ground layer provided on an upper surface of the board and a substrate, made of insulating material, of the board. A metal layer made of electrically conductive and solderable material is plated on an inner surface of the grounding through hole so that melted solder is raised to an upper surface of the board. An upper end of the metal layer is formed to a flange electrically connected with the ground pattern so that the melted solder is raised from the upper surface of the board, forming a spherical end of the solder.
Abstract:
A system and process, including a combination of a solder well and a vacuum system wherein micro through holes are filled with solder. A PC board or the like is supported for contact with solder on one side and with a vacuum apparatus for the application of a vacuum to the other side so that solder is drawn into the through holes for establishing electrically conductive connections therethrough.