Abstract:
The liquid supplied to an emitter electrode located at a tip of an atomization nozzle receives the high-voltage and electrically charged. The mist of the charged minute water particles of nanometer sizes is generated from the emitter electrode. A pressure regulating means regulates a pressure applied to the liquid on the tip of the emitter electrode. Therefore, the mode of generating the mist of the charged minute water particles of nanometer sizes or the mode of generating the mist of the charged minute water particles of nanometer and micron size is selected.
Abstract:
A method of the present invention, for controlling a harmful arthropod employs an ester compound which has a specific structure. Accordingly, with the method of the present invention, it is possible to control a wide variety of harmful arthropods effectively, without carrying out any heating process (e.g., a smoking process) for spraying the composition or any pressure process (e.g., a gas-pressure process or a mechanical pressure process) for spraying the compositions.
Abstract:
An electrostatically atomizing unit for use in a temperature regulating appliance to add a function of generating a mist of charged minute water particles for deodorization and/or sterilization of a temperature-regulated space. The appliance has a cold space of which air is cooled by cooling means and is fed to cool the temperature-regulated space divided from the cold space by a partition. The atomizing unit has an emitter electrode which is configured to condense water from within a surrounding air. A high voltage source applies a high voltage to the emitter electrode to atomize the condensed water into the charged minute water particles which are discharged from the emitter electrode into the temperature-regulated space. The emitter electrode is provided with a cooling coupler which establishes a heat transfer relation through the partition to the cold space to cool the emitter electrode by making the use of the cooling means inherent to the appliance.
Abstract:
An electrostatic atomization device that prevents the cooling capability from being lowered due to contact of an atomization electrode with another ember, while effectively preventing surplus production of condensed water that would destabilize discharging at the distal end of the atomization electrode. the electrostatic atomization device includes an atomization electrode having a cylindrical electrode body and a base which is informed at a basal end of the electrode body and has a larger diameter than the electrode from the base to produce condensed water on the atomization electrode. Voltage is applied to the atomization electrode when the condensed water is produced to generate charged fine water droplets. A partition plate includes an insertion hole that receives the electrode body of the atomization electrode. The partition plate and the base of the atomization electrode form a water collection region in between.
Abstract:
An electrostatic spraying device (1) includes a tank (11) in which a liquid is stored, a gas supply path (6a) which communicates with the tank (11), a pump (2) which applies pressure to the liquid in the tank (11) by supplying air to the tank (11) via the gas supply path (6a), and a control section (4) which controls a supply operation of the pump (2) to adjust a pressure in the tank (11).
Abstract:
An electrostatic atomization apparatus (4) includes a discharge electrode (1) and a liquid supplying device (2), which supplies liquid to the discharge electrode. A high voltage application device (3) that applies high voltage to the discharge electrode and performs electrostatic atomization on the liquid supplied to the discharge electrode. A discharge optimization unit electrically coupled to the high voltage application device so that potential at the discharge electrode is such that electrostatic atomization is performed in an acyclic manner without stopping discharging.
Abstract:
A method comprises introducing a fluid composition into one or more electrically insulating emitters, and applying voltage to the fluid to cause ejection of the solvent from the fluid after it exits the emitter. The fluid composition comprises first material having a dielectric constant greater than ˜25 and polymer mixed into liquid solvent having a dielectric constant less than ˜15, or polymer mixed into solvent having a dielectric constant greater than ˜8. Voltage can be applied to the fluid composition via a conductive electrode immersed in the fluid, or positioned outside and adjacent to the emitters. Conductivity of the fluid composition can be less than ˜100 μS/cm. A composition of matter comprises nanofibers formed by the method.
Abstract:
In an immobilization process of electrostatically spraying a nanomaterial dispersion liquid 13 from an electrostatic spray nozzle 20 and immobilizing a nanomaterial on a sample 10, a voltage is applied between the dispersion liquid 13 and the sample 10 to electrostatically spray the dispersion liquid 13 onto the sample 10 from a spray outlet 22 of the nozzle 20 under a condition where one or zero particles of the nanomaterial 18 are contained in each individual droplet 16 sprayed and electrostatically deposit the nanomaterial 18 onto a surface of the sample 10 after drying a solvent 17, contained in each individual droplet 16, in an atmosphere to immobilize the nanomaterial 18 on the sample 10. Aggregation of the nanomaterial in each droplet is thereby prevented and the nanomaterial can be immobilized favorably on the sample.
Abstract:
An electrostatic atomizing apparatus is used in a vehicle having an air conditioning system equipped with an air duct for delivering air into a passenger compartment, comprising a discharge electrode, an opposite electrode opposed to the discharge electrode, a cooler for cooling the discharge electrode, a high voltage power source for applying a high voltage between the discharge electrode and the opposite electrode so as to electrostatically atomize the condensed water deposited on the predetermined portion of the discharge electrode into mist, and a mist introducing pipe that introduces the mist into the air duct.
Abstract:
A reduced water mist generator, including: a water supply member that supplies water; a high voltage application member that applies a high voltage; and a discharge electrode that is constituted by a metal element that produces molecular hydrogen by a chemical reaction with nitric acid molecules, the discharge electrode being provided with an electrostatic atomizing function that, when a high voltage is applied by the high voltage application member while water is supplied by the water supply member, generates an electric field and thereby electrostatically atomizes the water supplied from the water supply member to produce microparticulated water, and also being provided with a hydrogen molecule generating function that produces the molecular hydrogen by a chemical reaction with nitric acid molecules generated when the water is electrostatically atomized, the discharge electrode generating a hydrogen water mist in the form of a reduced water that contains the molecular hydrogen in the microparticulated water.