Abstract:
A miniature hydro-power generation system may produce electric power from a flow of liquid. The miniature hydro-power generation system may include a housing that includes a plurality of paddles positioned to extend outwardly from an outer surface of the housing. The system may also include a nozzle and a centering rod extending through the housing. The housing may rotate around the centering rod when a stream of liquid from the nozzle is directed at the paddles. A generator that includes a rotor and a stator may be positioned within a cavity of the housing. The rotor may be coupled with the housing and the stator may be coupled with the centering rod. The rotor may rotate around the stator at high RPM to generate electric power when the housing rotates. The electric power may supply a load and/or may be stored in an energy storage device.
Abstract:
A water-purification device (22) for a potable water system comprising a chamber (23) through which water flows, a plurality of light-emitting diodes (24) that radiate ultraviolet light into the water within the chamber (23), and a driver circuit (26) providing power to the light-emitting diodes. The light-emitting diodes (24) can be positioned within or outside of the chamber (23) and they can be electrically connected in series. The drive circuit (26) receives voltage from a power source (e.g., an onboard power source on an aircraft) and can include a feedback accessory (40), an input accessory (42) and/or a fault-status accessory (44).
Abstract:
A liquid treatment system that may be self-powered includes a hydro-generator. A flow of liquid may be used to rotate the hydro-generator to generate electric power. The hydro-generator may include an outer housing and an inner housing. The inner housing may include a first hub removably engaged with a second hub. A plurality of paddles may be replaceably engaged between the first hub and the second hub. An electrical generator may be disposed in the inner housing. A flow of liquid may strike the paddles causing the inner housing to rotate. During rotation of the housing, the electrical generator may produce electrical power.
Abstract:
The present invention provides a method of and apparatus 1 for water desalination comprising transferring water vapour from salt-water in a vapourization zone 7, via a water vapour transfer zone 12, to a condensation zone 11, and condensing said water vapour into fresh-water. The water vapour transfer zone 12 is maintained substantially free of any gas other than water vapour. Heat is supplied to the vapourization zone 7 and extracted from the condensation zone 11, at relative rates such that there is a net transfer of water from the vapourization zone to the condensation zone. The invention also provides a method of and apparatus for degassing salt water using at least two degassing chambers 17A, 17B each provided with a valved vent 47 and a valved inlet 21,29,90,91, with a valved pipe circuit 17a, 72-82,85-87, having a pump 71. The pump and valved circuit transfer water from one chamber 17A to another 17B so as to reduce the pressure in the one chamber 17A inducing the release of dissolved gas, and expelling gas above the water out of the other chamber 17B. The direction of water transfer is then reversed so as to release dissolved gas in the other chamber 17B and expel gas in the one chamber 17A.
Abstract:
An effluent treatment system including a treatment tank for holding effluent; a filter for filtering effluent from the treatment tank; a valve for directing effluent from the filter component to either a discharge or through the inlet port of the treatment tank back into the interior of the treatment tank; and a pump for pumping effluent under pressure from the hollow interior of the treatment tank, through the outlet port of the treatment tank, through the filter component, through the valve, back through the inlet port of the treatment tank back into the interior of the treatment tank many times, and then to discharge.
Abstract:
A portable water filtration device includes a liquid-tight filter container and a filtration device mounted in the liquid-tight container. The filtration device includes an inlet opening extending through one of the walls and a first filtration device in liquid transfer connection with the inlet opening operative to receive and filter liquid flowing therethrough. A second filtration device is operative to receive liquid from the first filtration device and further filter the liquid flowing therethrough. The first and second filtration devices are selected from the group including ultraviolet, activated carbon and reverse osmosis filters, and an outlet opening extending through one of the walls then receives the treated water and releases the water from the filtration device. Finally, the liquid-tight filter container is operative to prevent liquid from entering the interior volume thereof thereby preventing contamination of the filtration device from accidental incursion of contaminants.
Abstract:
A continuous method for the treatment of a spent aqueous caustic stream used to scrub a hydrocarbon process stream to remove oxidizable sulfur-containing compounds includes: a. mixing an oxidizing hypochlorous acid stream produced from an aqueous brine solution with the aqueous caustic stream to form a reactive mixed feedstream; b. contacting the reactive mixed feedstream with at least one catalyst to promote the oxidation of the sulfur-containing compounds and the neutralization of the sodium hydroxide; and c. recovering a neutral treated product stream comprising aqueous sodium sulfate, sodium carbonate and sodium chloride that is odorless, non-toxic and environmentally acceptable for discharge into the sea or into a conventional sewage treatment system. Preferably, the hypochlorous acid is produced by an electrolyzer that also produces a (1) hydrogen stream that is directed to a PEM fuel cell to generate at least a portion of the electrical power requirement of the electrolyzer, and (2) water that is combined with fresh sodium hydroxide from the electrolyzer to form a fresh caustic stream for use in scrubbing the hydrocarbon process stream.
Abstract:
A liquid treatment system that may be self-powered includes a filter, an ultraviolet light source and a hydro-generator in a first flow path. The first flow path may provide treated liquid at a first outlet of the liquid treatment system. A second flow path included in the liquid treatment system may provide untreated liquid at a second outlet of the liquid treatment system. The first and second flow paths may be included in a housing, and may be selectable with a switching mechanism by a user of the liquid treatment system. The housing may be mounted at the end of a faucet. The hydro-generator may generate electric power for use by the ultraviolet light source and a processor. The processor may monitor the electric power and energize the ultraviolet light source with the electric power when the rotational speed of the hydro-generator enters a determined range.
Abstract:
A renewable portable stored energy generating apparatus is provided, comprising a fully contained and stand-alone container. The container includes one or more storage batteries for providing auxiliary electrical power when required, with one or more renewable energy sources, such as solar energy, connected to the storage batteries. A water filtration system is connected to an inlet of a pump, the pump being connected to the storage batteries. An outlet of the pump is connected to an inlet of one of a fresh and salt water filter, the water filter including an outlet that is connected to a water dispensing device. The water filtration system includes a conduit system adapted to deliver water to the pump inlet from alternate water sources, and a valve located in the conduit system. The valve is moveable between a plurality of positions to selectively deliver water to the pump from one of the alternate water sources. The portable apparatus is ready for operation except for the deployment of the renewable energy sources.
Abstract:
A fee basis program for emergency response to accidental or intentional contamination of a water supply includes supplying equipment designed to treat contaminated water and restore it to desired levels of usability. The program also includes provisions for training of crews, determination of optimum numbers of treatment units, deployment of the equipment, and response times. Included in the program is a fee schedule for acquisition and use of the treatment units and a monitoring function tabulating the use of each unit.