Abstract:
Opaque silica glass having a density of 2.0 to 2.18 g/cm.sup.3, sodium and potassium elements concentrations in the silica glass of each 0.5 ppm or less and an OH group concentration of 30 ppm or less, and containing bubbles which are independent bubbles having the following physical values: a bubble diameter of 300 .mu.m or less, and a bubble density of 100,000 to 1,000,000 bubbles/cm.sup.3, and a production process for opaque silica glass, including: filling quartz raw material grain having a particle size of 10 to 350 .mu.m in a heat resistant mold, heating it in a non-oxidizing atmosphere from a room temperature up to a temperature lower by 50 to 150.degree. C. than a temperature at which the above raw material grain is melted at a temperature-raising speed not exceeding 50.degree. C./minute, then, slowly heating it up to a temperature higher by 10 to 80.degree. C. than the temperature at which the quartz raw material grain is melted at the speed of 10.degree. C./minute or less, and cooling after maintaining at the above temperature.
Abstract translation:密度为2.0〜2.18g / cm 3的不透明二氧化硅玻璃,二氧化硅玻璃中的钠和钾元素浓度为0.5ppm以下,OH基浓度为30ppm以下,并且含有具有以下的独立气泡的气泡 物理值:气泡直径为300μm以下,气泡密度为100,000〜1,000,000个气泡/ cm 3,以及不透明石英玻璃的制造方法,其特征在于,填充粒径为10〜350μm的石英原料粒子 在耐热模具中,将其在非氧化性气氛中从室温加热到低于50-150℃的温度,而不是以不升温速度将上述原料颗粒熔化的温度 超过50℃/分钟,然后缓慢加热至高于10℃至80℃的温度,高于石英原料颗粒以10℃/分钟或更低的速度熔化的温度, 并保持冷却 在上述温度下。
Abstract:
Molded bodies of quartz glass have at least one surface area of transparent quartz glass, the exposed surfaces of which are smooth and which have a surface microroughness of less than 8 .mu.m. The base material has a chemical purity of at least 99.9% and a cristobalite content of no more than 1%; is gas-impermeable and opaque; and contains pores. At a wall thickness of 1 mm, the base material has a nearly uniform direct spectral transmission of less than 10% in the wavelength range of .lambda.=190-2,650 nm; and which has a density of at least 2.215 g/cm.sup.3. The transparent surface area is formed from base material by heating it to a temperature above 1,650.degree. C. The thickness of the transparent layer is at least 0.5 mm, and its direct spectral transmission in the wavelength range of .lambda.=6001-2,650 nm is at least 60% for a layer thickness of 1 mm.
Abstract:
The method involves prehydrolysing alkoxysilanes and atomizing to droplets which are then cured to hardened beads with no or very low porosity and narrow size distribution by slurrying with aqueous ammonia. The cured beads are mixed with binders and the resulting pastes are compacted to green forms; the greens are sintered to fused silica-like objects at temperatures significantly lower than the melting of silica.
Abstract:
High purity fused silica particles are made by heating relatively low density silica flour in a high temperature flame. The silica flour feed rate, flame temperature, and collection zone temperature are adjusted to produce an aggregate of surface-bonded fused silica particles. The aggregate is shaped like a honeycomb and can be ground autogenously without introducing impurities into the final product.
Abstract:
An improved sol-gel method is proposed for the preparation of a transparent silica gel block, in which a deposit of fine silica particles having a controlled particle diameter as prepared by hydrolyzing an alkoxy silane in the presence of ammonia is dispersed in a silica sol solution prepared in an acidic condition and settled therein to form a structure of closest-packing prior to gelation, drying, sintering and vitrification so that silica glass blocks can be obtained with low volume shrinkage from the wet gel in an improved yield without cracks, bubbles and haziness. The improvement can be further enhanced when two separately prepared deposits of silica particles having larger and smaller particle diameters are dispersed as combined in the silica sol solution, especially, when the particle diameter in one deposit is not exceeding 22.5% of that in the other deposit.
Abstract:
In a forming a silica glass at low temperature, a fumed silica is added to a hydrolyzed solution of a metal alcoxide. 0.2-5 mol of fumed silica is added to 1 mol of metal alcoxide. Being uniformly dispersed, the solution is gelled and dried to be dry gel and then sintered to be non-porous. This process allows a practically large sized silica glass to be materialized which has been impossible by the previous sol-gel technology. In addition, a further large silica glass can be prepared by adjusting pH value to 3-6 with addition of base in the sol solution.
Abstract:
High-silica glasses are formed by sintering a dried gel at temperatures below the liquidus. The gel may be formed by mixing colloidal silica particles or silica-containing liquids with appropriate liquids. Fragmentation of the gel during drying is advantageously avoided by redispersing the dried gel or sol in a liquid to yield a colloidal suspension which is then gelled, dried, and finally sintered below the liquidus.
Abstract:
A method for producing silica glass wherein a dry silica gel subjected to a water desorption treatment and a carbon removal treatment is heated and has its temperature raised in an atmosphere containing chlorine, to perform a hydroxyl group removal treatment, the resultant silica gel is thereafter heated to a temperature of approximately 1,000.degree. C.-1,100.degree. C. in an atmosphere containing at least 1% of oxygen, to perform a chlorine removal treatment, and the resultant silica gel is further heated to a temperature of 1,050.degree. C.-1,300.degree. C. in He or in vacuum, to perform a sintering treatment. The silica glass thus produced does not form bubbles even when heated to high temperatures of or above 1,300.degree. C. Therefore, it is easily worked and it is free from the lowering of transparency attributed to the bubble formation.
Abstract:
An abrasion, scratch, mar and solvent resistant glass coated non-opaque shaped polycarbonate article comprising a polycarbonate substrate having deposited on the surface thereof (i) an intermediate primer layer containing the photoreaction products of certain polyfunctional acrylic monomers; and (ii) a top layer of vapor deposited glass.
Abstract:
A method of producing high-purity transparent vitreous silica body through flame hydrolysis of high-purity silane type gas, comprising forming the width in the sectional direction of the reduction area of said flame so as to be about more than 1.5 times as against the diameter of the formed vitreous silica body, and the length of the reduction area of said flame so as to be about more than 2.5 times as against said diameter, while retaining the head portion of the formed vitreous silica body within the reduction area of said flame to synthesize the high-purity transparent vitreous silica body.