Abstract:
An apparatus for imaging an array of a plurality of features associated with a sample tile. The apparatus includes a stage that supports the sample tile in an illumination region, and an illumination source having a plurality of LEDs adapted to emit light. At least a portion of the light illuminates the illumination region. Additionally, the apparatus includes an image collecting device adapted to selectively collect images of either a first signal when the illumination source is illuminating the illumination region, or a second signal absent illumination of the illumination region. The first signal has wavelengths effectively different from the wavelengths of the portion of the light emitted by the LEDs that illuminates the illumination region.
Abstract:
The invention features a multi-spectral microscopy system for illuminating a sample with light of a selectable spectral content and generating an image of the sample in response to the illumination. The multi-spectral microscopy system includes a multispectral illuminator that provides output radiation having the selectable spectral content. A preferred set of optical arrangements for the multispectral illuminator generates the output radiation so that the spectral content of the output radiation is substantially uniform across its transverse profile. Furthermore, the multispectral illuminator can include monitoring optics and a corresponding detector array that independently monitors the output in each spectral band of the radiation produced by the multispectral illuminator. The monitoring provides calibration, feedback, and/or source aging information to insure robust and reliable performance for the multispectral illuminator. The multi-spectral microscopy system also includes a microscope which illuminates the sample with light derived from the output of the multispectral illuminator, and beam modification optics, which modify the output from the lamp prior to the microscope to increase the light efficiency of the microscope and fully exploit field of view and resolution of the microscope.
Abstract:
An optical illuminator assembly for an analytical instrument, such as a clinical hematology or a flow cytometer instrument, and method of aligning the components of the illuminator assembly. The illuminator assembly includes a plurality of optical components, such as a laser source, e.g., a laser diode, optionally a spatial filter, a beam shaping aperture, and a focussing lens. The optical components are mounted in mounting plates, frames or mounting cylinders, which are in turn coupled to a mounting surface on the assembly. Each of the mounting plates or frames is movable in the x and y directions, perpendicular to the laser beam, by micrometer adjusters having opposing spring plungers or the like, to decenter components in the desired laser beam path of the illuminator assembly. The micrometers and spring plungers are removably secured in the mounting surface so that after the x-y alignment, the mounting plates or frames can be secured to the mounting surface by, e.g., screws, and the micrometers and spring plungers are removed. The beam focussing lenses are similarly mounted in mounting cylinders and adjusted in the z direction of the beam path (focused) by removably mounted adjusters, such as eccentric focussing tools. After focussing, the focusing tools are removed. Thus, a factory alignment and a low cost prealigned optical illuminator assembly is obtained.
Abstract:
Apparatus for sampling a laser beam used in an analytical instrument, e.g., a clinical hematology or flow cytometer instrument, for measuring absorption by particles suspended in a stream moving through a flow cell. The laser beam is typically passed through a mask, e.g., a beam shaping aperture, to shape the beam. The shaped beam is then passed through a beam splitter, located downstream of the beam shaping aperture, so that one part of the shaped beam strikes the flow cell (e.g., is focused onto the moving stream of particles), and a second part is diverted to obtain a reference measurement of the beam about to strike the flow cell. An absorption measurement is obtained of the light passing through the flow cell, and a difference circuit is used to obtain a difference signal relating the differences between the measured absorption and the unabsorbed reference sample of the initial beam intensity. The laser source may be a laser diode and a spatial filter may be used to produce the laser beam to be passed through the beam shaping aperture.
Abstract:
A method for inspecting the surface finish of a cast part made of single-crystal metal, the surface of the part potentially containing defects resulting from an inhomogeneity of orientation of at least a crystal lattice of the single-crystal metal, the method including acquiring, using an image-acquiring device, a series of images of the cast part illuminated by a polarized and collimated illuminating device, then analysing the series of images by an image-processing device, each image of the series of images being taken at a different polarization angle.
Abstract:
An optical measuring device determines a concentration of measurement gas in a sample gas by light absorption. The optical measuring device includes a light source, a deflecting mirror, a primary mirror, a secondary mirror and a radiation detector. A section between the light source and the deflecting mirror is configured to receive the sample gas. The light source is configured to emit light in the direction of the deflecting mirror. The deflecting mirror is configured to act as a collimator for incident light and to deflect the incident light in the direction of the primary mirror. The primary mirror and the secondary mirror are configured to direct the light deflected by the deflecting mirror onto the radiation detector.
Abstract:
A sensor device may determine a first optical sensor value associated with a first displacement and a second optical sensor value associated with a second displacement, wherein the first displacement is between an emitter associated with the first optical sensor value and a sensing location used to determine the first optical sensor value, wherein the second displacement is between an emitter associated with the second optical sensor value and a sensing location used to determine the second optical sensor value, and wherein the first displacement is different from the second displacement. The sensor device may determine one or more measurements using the first optical sensor value and the second optical sensor value, wherein the one or more measurements relate to a first penetration depth associated with the first optical sensor value, and a second penetration depth associated with the second optical sensor value.
Abstract:
An apparatus for irradiating an in particular biological sample, includes a first light source, a second light source, and at least one holographic optical component. The first light source, the second light source, and the holographic optical component are positioned relative to one another in such a way that first light from the first light source and second light from the second light source are deflected via the holographic optical component onto a common specimen region for irradiation of the specimen.
Abstract:
In order to provide a more practical gas analysis device than that having conventionally been, while keeping the laser source and the photodetector separated from the gas cell, thereby preventing exposure to a high temperature, the gas analysis device includes: a gas cell; a laser source or a photodetector separated from the gas cell; and a laser light transmission mechanism provided between the gas cell and the laser source or the photodetector. The laser light transmission mechanism includes one or a plurality of tubular members, and an inner space of the one or the plurality of tubular members provides a light path for the laser light.
Abstract:
An optical scanning system including a radiating source that outputs a light beam, a time varying beam reflector that reflects the light beam through a scan lens towards a transparent sample at an incident angle of plus or minus ten degrees from Brewster's angle, a focusing lens configured to be irradiated by light scattered from the transparent sample, and a detector that is irradiated by the light scattered from the transparent sample. The detector outputs a signal that indicates an intensity of light measured by the detector. None of the light scattered from the transparent sample is blocked. The light scattered from the transparent sample is scattered from the top surface of the transparent sample, the bottom surface of the transparent sample, or any location in between the top surface of the transparent sample and the bottom surface of the transparent sample.