Abstract:
The present disclosure includes field emission device embodiments. The present disclosure also includes method embodiments for forming field emitting devices. One device embodiment includes a housing defining an interior space including a lower portion and an upper portion, a cathode positioned in the lower portion of the housing, a elongate nanostructure coupled to the cathode, an anode positioned in the upper portion of the housing, and a control grid positioned between the elongate nanostructure and the anode to control electron flow between the anode and the elongate nanostructure.
Abstract:
A lighting device for liquid crystal display provides as output a polarized extended light flux. It comprises a light source 100 comprising a layer with high albedo A on the light emission surface SD(A), on which are stacked a quarter-wave plate 101 and a reflecting polarizer 103. This results in a light transmission gain of the order of 1+A, which makes it possible to produce displays with high luminance and low electrical consumption.Application to flat-screen displays.
Abstract:
A field emission lamp, capable of increasing the number of electron emitting points thereof, and of increasing the uniformity and the intensity of the light output therefrom by installing a mesh cathode is disclosed. The field emission lamp comprises: an outer shell having an inner surface, a mesh cathode unit surrounded by the outer shell, an anode unit formed on a portion of the inner surface of the outer shell, and a phosphor layer formed on a portion of the anode unit. Wherein, the light generated by the phosphor layer, due to the bombardment of the electrons, can output from the field emission lamp of the present invention, through the outer shell where none of the anode unit is formed thereon.
Abstract:
The present invention provides devices comprising an assembly of carbon nanotubes, and related methods. In some cases, the carbon nanotubes may have enhanced alignment. Devices of the invention may comprise features and/or components which may enhance the emission of electrons and may lower the operating voltage of the devices. Using methods described herein, carbon nanotube assemblies may be manufactured rapidly, at low cost, and over a large surface area. Such devices may be useful in display applications such as field emission devices, or other applications requiring high image quality, low power consumption, and stability over a wide temperature range.
Abstract:
A field emission flat light source and a manufacturing method thereof are provided. The field emission flat light source includes an anode (110), a cathode (120), a light guide plate (130) and a separation body (140). The anode (110) and the light guide plate (130) are separated by the separation body (140). The cathode (120) is provided in the contained space (150) formed by the anode (110), the light guide plate (130) and the separation body (140). The anode (110) includes an anode substrate (112), a metal reflective layer (114) provided on the anode substrate (112) and a light emitting layer (116) provided on the metal reflective layer (114). The cathode (120) includes a cathode substrate (122) and an electron emitter (124) provided on the surface of the cathode substrate (122). The thermal conductivity of the field emission flat light source is improved. The field emission flat light source is applied to the field of the liquid crystal display or the illumination light.
Abstract:
Light sources are provided with enhanced low-frequency (e.g., near infrared) emission. Some disclosed embodiments include a filament and at least one re-radiator element. The filament heats the re-radiator element to a steady-state temperature that is at least one quarter of the filament's absolute temperature. As disclosed herein, the increased surface area provided by the re-radiator element provides enhanced IR radiation from the light source. Patterning or texturing of the surface can further increase the re-radiator element's surface area. Various shapes such as disks, collars, tubes are illustrated and can be combined to customize the spectral emission profile of the light source. Some specific embodiments employ a coating on the bulb as the re-radiator element. The coating can be positioned to occlude light from the filament or to augment light from the filament, depending on the particular application. The various re-radiator elements can be positioned inside or outside the bulb.
Abstract:
The present invention relates to a field emission light source device, which includes: a base substrate; at least one cathode strip, disposed over the base substrate; at least one emissive protrusion, disposed over the cathode strip and electrically connected to the cathode strip; an insulating layer, disposed over the cathode strip and having at least one opening to allow the emissive protrusion to protrude out of the opening; at least one anode strip, disposed over the insulating layer, where the cathode strip and the anode strip are arranged into an m×n matrix and the at least one anode strip individually has an impacted surface corresponding to the emissive protrude; and a phosphor layer disposed over the impacted surface. Accordingly, the present invention can enhance light utilization efficiency of a field emission light source device.
Abstract:
In accordance with the invention, there are field emission light emitting devices and methods of making them. The field emission light emitting device can include a plurality of spacers, each connecting a substantially transparent substrate to a backing substrate. The device can also include a plurality of pixels, wherein each of the plurality of pixels can include one or snore first electrodes disposed over the substantially transparent substrate, a light emitting layer disposed over each of the one or more first electrodes, and one or more second electrodes disposed over the backing substrate, wherein the one or more second electrodes and the one or more first electrode are disposed at a predetermined gap in a low pressure region. Each of the plurality of pixels can further include one or more nanocylinder electron emitter arrays disposed over each of the one or more second electrodes.
Abstract:
A 3-dimension facet light-emitting source device including a transparent container, an anode plate, a cathode plate, a plurality of transparent plates and a low-pressure gas layer is provided. The transparent container has a sealed space. The transparent plates are disposed between the anode plate and the cathode plate, and have a fluorescent layer thereon respectively. The lower pressure gas layer is filled in the sealed space to induce electrons emitting from the cathode plate, and the electrons fly in a direction parallel to the transparent plates and hit each fluorescent layer to emit light, so as to form a set of 3-dimension facet patterns.