Abstract:
A semiconductor power handling device, includes a cathode pillar, a gate surrounding the cathode pillar, and an anode spaced from the cathode by a nano-vacuum gap. An array of semiconductor power handling devices, each comprising a cathode pillar, a gate surrounding the cathode pillar, and an anode spaced from the cathode pillar by a nano-vacuum gap. The semiconductor power handling devices can be arranged as rows and columns and can be interconnected to meet the requirements of various applications. The array of power handling devices can be fabricated on a single substrate.
Abstract:
A method of manufacturing an article with integral active electronic component includes using an additive manufacturing process to: a) form a non-electrically conductive substrate; b) form a non-electrically conductive perforated layer having an aperture; c) form electrically conductive anode and cathode elements spaced in the aperture; d) deposit a conductive electrical connection to each of the elements suitable for imparting an electrical potential difference between the elements; and e) form a non-electrically conductive sealing layer atop the perforated layer so as to retain and seal the aperture in the perforated layer.
Abstract:
A high voltage, high current vacuum integrated circuit includes a common vacuum enclosure that includes at least two cold-cathode field emission electron tubes, and contains at least one internal vacuum pumping means, at least one exhaust tubulation, vacuum-sealed electrically-insulated feedthroughs, and internal electrical insulation. The cold-cathode field emission electron tubes are configured to operate at high voltage and high current and interconnected with each other to implement a circuit function.
Abstract:
A vacuum tube includes a filament and two pairs of a grid and an anode. The filament is tensioned linearly and emits thermoelectrons. Both of the anodes are formed on a same face on a planar substrate. The filament is arranged parallel to the planar substrate at a position facing both of the anodes. Each of the grids is arranged, such that the grid faces the anode of a same pair at a first predetermined distance from the anode and has a second predetermined distance from the filament, between the anode and the filament. The vacuum tube further includes an intermediate filament fixing part fixing the filament at a position corresponding to an intermediate point between the anodes of the two pairs.
Abstract:
An object of the present invention is to provide a vacuum tube with a structure close to that of an inexpensive and easily available vacuum fluorescent display which easily operates as an analog amplifier. A vacuum tube subject to the present invention comprises: a filament which is tensioned linearly and emits thermoelectrons, an anode arranged parallel to the filament, and a grid arranged between the filament and the anode such that the grid faces the anode. The present invention is characterized in that a distance between the filament and the grid is between 0.2 mm and 0.6 mm, including 0.2 mm and 0.6 mm.
Abstract:
An integrated vacuum microelectronic structure is described as having a highly doped semiconductor substrate, a first insulating layer placed above said doped semiconductor substrate, a first conductive layer placed above said first insulating layer, a second insulating layer placed above said first conductive layer, a vacuum trench formed within said first and second insulating layers and extending to the highly doped semiconductor substrate, a second conductive layer placed above said vacuum trench and acting as a cathode, a third metal layer placed under said highly doped semiconductor substrate and acting as an anode, said second conductive layer is placed adjacent to the upper edge of said vacuum trench, the first conductive layer is separated from said vacuum trench by portions of said second insulating layer and is in electrical contact with said second conductive layer.
Abstract:
A high voltage, high current vacuum integrated circuit includes a common vacuum enclosure that includes at least two cold-cathode field emission electron tubes, and contains at least one internal vacuum pumping means, at least one exhaust tubulation, vacuum-sealed electrically-insulated feedthroughs, and internal electrical insulation. The cold-cathode field emission electron tubes are configured to operate at high voltage and high current and interconnected with each other to implement a circuit function.
Abstract:
The present invention relates to display manufacturing technology, especially for a dielectric-free triode field emission display device based on double-gate/single-cathode type electron emission units and the device drive methods. This device comprises parallelly positioned anode and cathode/gate plates, during production, gate/cathode/gate electron emission units are set on the cathode/gate plate side by side. The spacing between cathode and gate electrodes is vacuum circumstance. For each cathode, an anode is positioned on the anode plate, facing the cathode. And the voltages applied on the cathode and gate electrodes are to scan and the anode voltage is to adjust the signal. When the electrodes on the cathode/gate plate take on fixed roles, fixed voltages are used to drive the device. When these electrodes on the cathode/gate plate can be used interchangeably as cathode or gate electrodes, respectively, pulse scanning method is used to drive the device.
Abstract:
Methods are disclosed for batch fabrication of vacuum switch tubes that reduce manufacturing costs and improve tube to tube uniformity. The disclosed methods comprise creating a stacked assembly of layers containing a plurality of adjacently spaced switch tube sub-assemblies aligned and registered through common layers. The layers include trigger electrode layer, cathode layer including a metallic support/contact with graphite cathode inserts, trigger probe sub-assembly layer, ceramic (e.g. tube body) insulator layer, and metallic anode sub-assembly layer. Braze alloy layers are incorporated into the stacked assembly of layers, and can include active metal braze alloys or direct braze alloys, to eliminate costs associated with traditional metallization of the ceramic insulator layers. The entire stacked assembly is then heated to braze/join/bond the stack-up into a cohesive body, after which individual switch tubes are singulated by methods such as sawing. The inventive methods provide for simultaneously fabricating a plurality of devices as opposed to traditional methods that rely on skilled craftsman to essentially hand build individual devices.
Abstract:
An electrons' emission device is presented. The device comprises an electrodes' arrangement including at least one Cathode electrode and at least one Anode electrode, the Cathode and Anode electrodes being arranged in a spaced-apart relationship; the device being configured to expose said at least one Cathode electrode to exciting illumination to thereby cause electrons' emission from said Cathode electrode, the device being operable as a photoemission switching device.