Abstract:
Aspects of a method and system for choice of a steering matrix (Q) for sounding in antenna selection are presented. Aspects of the system may include a transmitting station that enables determination of values for a plurality of matrix elements, which are represented in a steering matrix (Q). The contents of the steering matrix may be determined based on the contents of a plurality of protocol data units (PDU). Each of the PDUs may comprise a sounding frame. One or more space-time signals may be generated based on the plurality of PDUs. One or more transmit chain signals may be generated by multiplying a vector representation, which comprises the one or more space-time signals, by the steering matrix. One or more transmit chain signals may be transmitted via transmitting antennas selected from a plurality of transmitting antennas.
Abstract:
A method and apparatus for detecting a signal in a communication system using at least two transmit antennas are provided. The signal detection method and apparatus includes selecting a symbol corresponding to a lowest branch metric from among symbols, the number of which corresponds to a modulation scheme, determining a candidate symbol by extending a process of selecting a symbol corresponding to a lowest branch metric from among the selected symbols, to a number which is less by one than the number of the transmit antennas, setting an accumulated branch metric of the candidate symbol as a threshold, removing a symbol having an accumulated branch metric higher than the threshold, and selecting, as a last received symbol, a symbol corresponding to a path having the lowest accumulated branch metric among paths selected without being removed until a last stage.
Abstract:
A rotation by a phase offset is applied to symbols to be transmitted by one antenna relative to symbols to be transmitted from another antenna in a wireless communication system employing multi-element antennas at the transmitter. Such a phase offset allows the functionality of a MIMO system to be maintained when a MIMO channel degenerates. Advantageously, a MIMO system using the new signal design may provide a level of performance in a rich-scattering environment that is equivalent to a MIMO system using a known signal design. Furthermore, a MIMO system employing embodiments of the present invention may show significantly improvements in robustness over conventional MIMO systems.
Abstract:
A Hybrid IMMSE-LMMSE receiver processing technique predicts performance of and selects between iterative and non-iterative decoding of symbols based on an intelligent metric. Based on a pre-specified criterion, the receiver determines if a correct first-stage decision is made or not. If a correct decision is made, then it follows iterative processing like in BLAST. Alternatively, if a wrong decision is found to have occurred, the receiver resorts to LMMSE estimation processing.
Abstract:
A system according to embodiments of this invention provide a multiple transmit antenna (117-1 . . . M), multiple receive antenna (121-1 . . . N) (MIMO) receiver (125) design for the communication downlinks such as those used in CDMA technology. Two algorithms referred to as the MIMO LMMSE-FFT and MIMO LMMSE-SIC (Successive Interference Cancellation) algorithms, are described in detail. In embodiments of the invention, the interference cancellation step is achieved without the impractical assumption of the knowledge of all the active Walsh codes in the systems, unlike many other interference cancellation based algorithms found in the literature.
Abstract:
An apparatus and method for lowering a tree searching complexity in a Spatial Multiplexing (SM) Multiple Input Multiple Output (MIMO) antenna system are provided. A transmitting apparatus includes a generator for generating a plurality of transmit streams by spatial-multiplexing a transmit data, a determiner for determining modulation schemes to be applied to the plurality of the transmit streams respectively and a modulator for modulating the plurality of the transmit streams using at least two modulation schemes under control of the determiner. The receiver detects the signals by allocating the modulation scheme of the lowest order to the upper tree level.
Abstract:
A method of retransmitting a data packet in a wireless communication system having multiple antennas is disclosed. More specifically, a mobile station (MS) determines a retransmission format from a plurality of retransmission formats and then informs the determined retransmission format by which to retransmit the data packet. A 1 = [ S ~ 1 - S ~ 2 0 0 S ~ 2 S ~ 1 S ~ 3 - S ~ 4 0 0 S ~ 4 S ~ 5 ] A 2 = [ S ~ 1 - S ~ 2 S ~ 3 - S ~ 4 S ~ 2 S ~ 1 0 0 0 0 S ~ 4 S ~ 5 ] A 3 = [ S ~ 1 - S ~ 2 0 0 S ~ 2 S ~ 1 S ~ 3 - S ~ 4 S ~ 2 S ~ 1 S ~ 4 S ~ 5 ]
Abstract:
A wireless communication system is disclosed wherein an information source communicates with a mobile station via multiple intermediary base stations located in respective cells of a broadcast zone. In one embodiment, each base station sends multiple information streams that may be received by a mobile station located in the broadcast zone. By receiving multiple information streams from multiple base stations, the mobile station may enhance reception. In one embodiment, a base station transmits an information stream that includes a base layer and another information stream including an enhanced layer. If a receiver in a mobile station receives an enhanced layer with more than a predetermined amount of quality, then the receiver uses information in the received enhanced layer to supplement information in the received base layer.
Abstract:
Systems and methods for improving the performance of a MIMO wireless communication system by reducing the amount of uplink resources that are needed to provide channel performance feedback for the adjustment of data rates on the downlink MIMO channels. In one embodiment, a method comprises encoding each of a set of data streams according to corresponding data rates, permuting the data streams on a set of MIMO channels according to a full permutation of combinations, transmitting the permuted data streams, receiving the permuted data streams, decoding and determining an SNR for each of the data streams, computing a condensed SNR metric for the set of data streams, providing the condensed metric as feedback, determining a set of individual SNR metrics for the data streams based on the condensed SNR metric, and adjusting the data rates at which the data streams are encoded based on the individual SNR metrics.
Abstract:
An apparatus and method for simultaneously providing service to users each having a different number of antennas in a multiple-antenna wireless communication system are provided. The communication method discloses a BS in a wireless communication system that services a first multiple antenna mode using X transmit antennas and a second multiple antenna mode using Y transmit antennas such that (Y>X), the BS determines an MS to be serviced in the second multiple antenna mode and receives a sounding signal from the MS. The BS estimates an uplink channel using the received sounding signal and acquires downlink channel values using estimated uplink channel values. Then the BS services the MS in the second multiple antenna mode using the downlink channel values.