Abstract:
A technique for one step solder application through a mask to a printed circuit board (PCB) having pads for surface mountable components and through holes for a leaded components is disclosed wherein the amount of solder deposited on the pads and in the holes is simultaneously, independently controlled as a function of mask thickness, blade hardness and blade to mask angle.
Abstract:
A system for connecting a semiconductor chip carrier to a printed circuit card is described. The semiconductor chip carrier has a flexible, extendable wiring membrane attached to the bottom thereof which extends beyond the periphery of the semiconductor chip carrier and in the area beyond the periphery is provided with electrical contacts. The electrical contacts are mated to complementary contacts in a printed circuit card which is biased from the semiconductor chip carrier by electrical and thermal contact means. The membrane, inter alia, provides high density electrical contact between the semiconductor and printed circuit card. Various elements thereof and a process for forming the same are described.
Abstract:
Solder (12) joins together a second conductive pattern (4) of a flexible substrate (1) and a third conductive pattern (7) of a print substrate (6) and joins together a second GND pattern (5) of the flexible substrate (1) and a third GND pattern (8) of the print substrate (6). A through hole (11) passes through the flexible substrate (1) and connects the first and second GND patterns (3,5) together. In an extension direction in which the second conductive pattern (4) extends, an end portion of a solder joint portion between the second conductive pattern (4) and the third conductive pattern (7) is in a position corresponding to the through hole (11) and is shifted from an end portion of the through hole (11).
Abstract:
A circuit board (1) for a power semiconductor module (13), having at least one top side (2) and one bottom side (3), wherein at least one mounting area (4) for a power semiconductor component (12) is provided on the top side (2), wherein on the mounting area (4), at least one solder layer (8) is provided for connecting at least one power semiconductor component (12) to the mounting area (4), which layer is divided into regions (9) that are separated from one another by means of intermediate spaces (11), and wherein multiple thermal vias (5) are provided in the circuit board (1) and extend from the top side (2) to the bottom side (3) of the circuit board (2) in the region of the mounting area (4), wherein each upper opening (6) of the thermal vias (5) is directly surrounded by a respective region (9) of the solder layer (8) and each lower opening (7) of the vias (5) is covered by a layer (10) of electrically insulating material.
Abstract:
A multi-layer circuit board is formed by positioning a top sub having traces on at least one side to one or more pairs of composite layers, each composite layer comprising an interposer layer and a sub layer. Each sub layer which is adjacent to an interposer layer having an interconnection aperture, the interconnection aperture positioned adjacent to interconnections having a plated through via or pad on each corresponding sub layer. Each interposer aperture is filled with a conductive paste, and the stack of top sub and one or more pairs of composite layers are placed into a lamination press, the enclosure evacuated, and an elevated temperature and laminated pressure is applied until the conductive paste has melted, connecting the adjacent interconnections, and the boards are laminated together into completed laminated multi-layer circuit board.
Abstract:
An apparatus includes a printed circuit board. The printed circuit board includes at least one conductive layer on top a first dielectric layer, wherein the at least one conductive layer comprises at least one of a ground plane and a power plane. The printed circuit board includes a second dielectric layer on top of the at least one conductive layer. The printed circuit board includes a thermal pad on top of the second dielectric layer. The printed circuit board is fabricated by forming at least one plated through hole for electrically coupling the thermal pad to the at least one conductive layer. The printed circuit board is fabricated by backdrilling the at least one plated through hole to remove a portion of the conductive material, wherein subsequent to the backdrilling the conductive material remaining in the at least one plated through hole electrically couples one or more of the at least one conductive layer to the thermal pad.
Abstract:
A printed circuit board, a ball grid array package and a wiring method of a printed circuit board are provided. The printed circuit board comprises: a substrate, the substrate including a plurality of insulating layers stacked and a plurality of conductive layers disposed between adjacent insulating layers; a plurality of pads, disposed in a two-dimensional matrix on a surface of the substrate; and a plurality of via holes, disposed corresponding to each pad and running through the substrate and the corresponding pad. The ball grid array package according to an embodiment of the invention comprises the above-described printed circuit board.
Abstract:
The present invention relates generally to electric circuit testing, building, or implementing using a breadboard style PCB. Aspects of the present invention include eliminating the need to use hookup wires when building and testing electric circuits on PCBs. In embodiments, a PCB system having rows and columns of signal tie points connected in a breadboard layout and using an embedded wire and a solder bridge to form partial connections between signal tie points. In embodiments, the embedded wire and solder bridge is capable of connecting a column of signal tie points. In embodiments, the embedded wire and solder bridge is capable of connecting a power rail to a signal tie point. Thus, a circuit can be implemented and tested by applying a small amount of solder to the solder bridge without the need for hookup wires.
Abstract:
A method includes fabricating a printed circuit board. The fabricating includes forming at least one conductive layer on top a first dielectric layer, wherein the at least one conductive layer comprises at least one of a ground plane and a power plane. The fabricating includes forming a second dielectric layer on top of the at least one conductive layer. The fabricating includes forming a thermal pad on top of the second dielectric layer. The fabricating includes forming at least one plated through hole for electrically coupling the thermal pad to the at least one conductive layer. The fabricating includes backdrilling the at least one plated through hole to remove a portion of the conductive material, wherein subsequent to the backdrilling the conductive material remaining in the at least one plated through hole electrically couples one or more of the at least one conductive layer to the thermal pad.
Abstract:
In some embodiments, to increase the height-to-pitch ratio of a solder connection that connects different structures with one or more solder balls, only a portion of a solder ball's surface is melted when the connection is formed on one structure and/or when the connection is being attached to another structure. In some embodiments, non-solder balls are joined by an intermediate solder ball (140i). A solder connection may be surrounded by a solder locking layer (1210) and may be recessed in a hole (1230) in that layer. Other features are also provided.