Abstract:
A composite electronic component includes a composite body having a multilayer ceramic capacitor and a tantalum capacitor coupled to each other, so as to have an excellent acoustic noise reduction effect, a low equivalent series resistance (ESR)/equivalent series inductance (ESL), improved direct current (DC)-bias characteristics, and a low chip thickness.
Abstract:
A mounting structure for a printed circuit board, includes a printed circuit board to which a heavy material is fixed; a fixing member fixed to the printed circuit board immediately below the heavy material; and a receiving member fixed to a main body. A bottom portion of the fixing member is disposed in the receiving member, and fixed to the receiving member by a resin adhesive.
Abstract:
A chip-component structure includes an interposer on which a multilayer capacitor is mounted. The interposer includes component connecting electrodes, external connection electrodes, side electrodes, and in-hole electrodes. The component connecting electrodes and the external connection electrodes are electrically connected by the side electrodes and the in-hole electrodes. Outer electrodes of the capacitor are joined to the component connecting electrodes.
Abstract:
A multilayer ceramic capacitor may include: an active part including a plurality of first and second internal electrodes; upper and lower cover layers; and first and second external electrodes including head parts and band parts. When a thickness of the upper or lower cover layer is defined as C, a width of a margin portion of the ceramic body in a width direction is defined as M, a cross-sectional area of the ceramic body in a width-thickness direction is defined as Ac, a cross-sectional area of the active part in a width-thickness direction in a portion thereof in which the first and second internal electrodes are overlapped with each other in a thickness direction is defined as Aa, and a width of the band part of the first or second external electrode is defined as B, 1.826≦C/M≦4.686, 0.2142≦Aa/Ac≦0.4911, and 0.5050≦C/B≦0.9094 may be satisfied.
Abstract translation:多层陶瓷电容器可以包括:有源部分,包括多个第一和第二内部电极; 上下盖层; 以及包括头部和带部分的第一和第二外部电极。 当上盖层或下盖层的厚度定义为C时,将陶瓷体的宽度方向的边缘部分的宽度定义为M,陶瓷体的宽度方向的横截面积为 定义为Ac,其中第一和第二内部电极在厚度方向上彼此重叠的部分中的宽度厚度方向上的有源部分的横截面面积被定义为Aa,并且宽度 第一或第二外部电极的带部分被定义为B,1.826& NlE; C / M& NlE; 4.686,0.2142& NlE; Aa / Ac&NlE; 0.4911和0.5050& N; E / C&B&NlE; 0.9094。
Abstract:
A chip-component structure includes an interposer on which a multilayer capacitor is mounted. The interposer includes component connecting electrodes, external connection electrodes, side electrodes, and in-hole electrodes. The component connecting electrodes and the external connection electrodes are electrically connected by the side electrodes and the in-hole electrodes. Outer electrodes of the capacitor are joined to the component connecting electrodes.
Abstract:
An electronic chip component includes a ceramic body; external electrodes formed on end portions of the ceramic body; an interposer supporting the ceramic body and electrically connected to the external electrodes, wherein the interposer includes a first electrode pad formed on a surface thereof and having the external electrodes disposed thereon, a second electrode pad formed on an opposing surface thereof, and a connection electrode pad connecting the first electrode pad to the second electrode pad and formed on a lateral surface between the surface and the opposing surface of the interposer, the first electrode pad is divided into first and second electrode patterns disposed at ends of the interposer based on a space formed therebetween, a non-electrode margin portion is formed between ends of the first electrode pad and ends of the interposer, and the connection electrode pad is formed on the lateral surface of the interposer.
Abstract:
A composite electronic component may include: a composite body including a combination of a capacitor formed of a ceramic body including a plurality of dielectric layers and first and second internal electrodes disposed to face one another with the dielectric layers interposed therebetween, and an inductor formed of a magnetic body including a coil unit; a first external electrode formed on the first lateral surface of the ceramic body and electrically connected to the first internal electrodes and a second external electrode formed on the second lateral surface of the ceramic body and electrically connected to the second internal electrodes; third and fourth external electrodes formed on first and second end surfaces of the magnetic body and connected to the coil unit, and first and second dummy electrodes formed on first and second end surfaces of the magnetic body.
Abstract:
An electronic device may be provided with integrated circuits and electrical components such as capacitors that are soldered to printed circuit boards. Liquid polymer adhesive such as encapsulant and underfill materials may be deposited on the printed circuit. Electrical components such as capacitors may be coated with the encapsulant. The underfill may be deposited adjacent to an integrated circuit, so that the underfill wicks into a gap between the integrated circuit and the printed circuit board. The encapsulant may be more viscous than the underfill and may therefore prevent the flowing underfill from reaching the electrical components. Some of the encapsulant may be located between the electrical components and the printed circuit board. The encapsulant can be cured to form an elastomeric material covering the electrical components that helps damp vibrations. The elastomeric material may be less stiff than the underfill.
Abstract:
There is provided a mounting circuit board of a multilayer ceramic capacitor including a multilayer ceramic capacitor including a ceramic body in which a plurality of dielectric layers are stacked, an active layer including a plurality of first and second internal electrodes alternately exposed to both end surfaces of the ceramic body, having the dielectric layer therebetween, and first and second external electrodes extended from both end surfaces of the ceramic body to a portion of a lower surface thereof; and a printed circuit board having first and second electrode pads so that the first and second external electrodes are mounted thereon, wherein the first and second electrode pads are disposed in positions diagonally opposed to each other, based on the ceramic body.
Abstract:
An electronic chip component includes a ceramic body; external electrodes formed on end portions of the ceramic body; an interposer supporting the ceramic body and electrically connected to the external electrodes, wherein the interposer includes a first electrode pad formed on a surface thereof and having the external electrodes disposed thereon, a second electrode pad formed on an opposing surface thereof, and a connection electrode pad connecting the first electrode pad to the second electrode pad and formed on a lateral surface between the surface and the opposing surface of the interposer, the first electrode pad is divided into first and second electrode patterns disposed at ends of the interposer based on a space formed therebetween, a non-electrode margin portion is formed between ends of the first electrode pad and ends of the interposer, and the connection electrode pad is formed on the lateral surface of the interposer.