Abstract:
The present invention relates to a method and accompanying device for separating a known or unknown sample into one or more subsamples. By comparing the subsample's measurement profile data to the sample measurement profile data, the performance of the separation can be determined. The separation could be chromatography [such as high-performance liquid chromatography (HPLC), gas chromatography (GC), or the like], electrophoresis [such as capillary electrophoresis (CE) or the like], or another separation technique. The measurement profile data could be ultraviolet/visible (UV/Vis) spectra, mass spectra (MS), or another measurement technique.
Abstract:
The invention relates to an ultra fine particle sensor (1) for sensing airborne particles with a diameter in a range of approximately 1-500 nm. The sensor comprises an air inlet (2) for entry of a flow of ultra fine particles and a concentration variation section (4) capable of causing a variation of the concentration of ultra fine particles between at least a first concentration level and a second concentration level during at least one time interval. A particle sensing section (5) is provided capable of producing a measurement signal (I) varying in dependence of said variation between said first concentration level and said second concentration level. An evaluation unit (6) is provided capable of deriving data relating to said ultra fine particles form said varying measurement signal. As a result of the applied variation in the concentration level, data can be obtained from the resulting variation of the measurement signal which relate to the length concentration and number concentration of airborne ultra fine particles per unit volume.
Abstract:
The invention provides a method of calibrating an optical analysis system that makes use of multivariate optical signal analysis allowing to realize cost-efficient and robust implementation of a spectral analysis of an optical signal. The calibration method makes use of determining a parameter of a reference sample by means of the optical analysis system and comparing the actually determined parameter with a reference parameter that represents a precise and real property of the reference sample. Based on this comparison a calibration value can be determined that is applicable to perform a calibration of the optical analysis system with respect to at least one compound or analyte of the reference sample. Parameters and reference parameters of a reference sample may refer to a concentration of an analyte dissolved in the sample, or to spectroscopic background signals that have to be taken into account when performing a spectral analysis based on optical signals obtained from the reference sample. Various different reference samples providing a reference with respect to different acquisition conditions and different analyte or compound concentrations can be universally used. Analyte-specific reference data is preferably stored in a calibration unit of the optical analysis system and allows a high degree of automation of the calibration process.
Abstract:
In a spectroscopic process a sample for producing a test spectral line or spectrum of at least one component contained in the sample is stimulated and the transmitted and/or emitted electromagnetic rays are used to create the test spectral line or spectrum. In order to improve such a spectroscopic process to such an extent that variations of certain parameters, which alter the shape and/or occurrence of a spectral line, are compensated, a comparison spectral line or spectrum of a known comparison material is produced under substantially the same parameters as the sample. The comparison spectral line or spectrum is compared with an ideal comparison spectral line or spectrum in order to calculate a transfer function, andthe transfer function is applied to the test spectral line or spectrum in order to calculate a corrected test spectral line or spectrum.
Abstract:
A light source section outputs optical flux having two types of wavelength, which are a short wavelength and a long wavelength, while the intensity is made variable. The optical flux is made incident to a detected surface of a body to be detected at a predetermined incident angle simultaneously or alternatively. Based on a type of optical flux outputted from the light source section and an output from a first light intensity detecting section, at least the intensity of the optical flux having a long wavelength outputted from the light source section is adjusted. The output from the first light intensity detecting section in irradiating the optical flux having a short wavelength is compared with the output from the first light intensity detecting section in irradiating the optical flux having a long wavelength. A signal that appears only in the output from the first light intensity detecting section in irradiating the optical flux having a long wavelength is identified as a detected signal from an internal subject. The intensity of optical flux having a long wavelength is adjusted. A disappearance level near a point where the detected signal from the internal subject disappears is calculated. The first intensity of optical flux having a long wavelength is set to level higher than the disappearance level. Based on the output from the first light intensity detecting section obtained by the optical flux having a long wavelength of the first intensity, a subject inside the body to be detected is measured.
Abstract:
A toxic gas sensor or device which is a cavity ring-down spectroscopy device having two or more mirror components. Each of the mirror components has two Brewster windows attached to it. The Brewster windows are resistant to toxic gases and together with the respective mirror form a hermetically sealed volume for the mirror surface to protect it from the environment or test gases. The Brewster windows may have a heating mechanism to remove contaminants, condensation, and provide temperature stabilization and other beneficial features.
Abstract:
Physical property determination of a particle or classification of the particle as a function of the physical property by evaluating scattered light profile from a single particle is disclosed. The particle may include chemical structures that vibrate as a function of a physical property of the particle. The physical property may include an absorptive property of the particle or a chemical composition. From a detected scattered light spectrum, at least two anomalous dispersive regions may be identified. The physical property of the particle may be determined as a function of the at least two regions. A system employing the physical property determination can achieve sensitivities useful for low particle density applications such as detection for biological and chemical agents.
Abstract:
Apparatus for in-situ monitoring of a process in a semiconductor wafer processing system consists of a process chamber having a dome, an enclosure disposed above the chamber, a process monitoring assembly positioned proximate the dome, an opening in the dome, and a window covering the opening. A portion of the apparatus supports the process monitoring assembly to establish a line-of-sight propagation path of monitoring beams from above the dome, through the window to the substrate to facilitate etch depth measurement without encountering interference from high power energy sources proximate the chamber. A method of fabricating a process monitoring apparatus consists of the steps of boring an opening into a dome, positioning the process monitoring assembly in proximity to the dome so as to allow a line-of-sight propagation path of monitoring beams from the process monitoring assembly to a wafer, and covering the opening with a window. The window is permanent or removable dependent upon the type of process monitoring assembly being used in the system.
Abstract:
Methods for generating a customized spectral profile, which can be used to generate a corresponding filter, lamp or other type of illuminant. A trial spectrum is generated. A reference spectrum is determined or otherwise obtained. A SOURCE spectrum is determined or otherwise obtained. One or more optical indices are calculated using the trial spectrum and one or more of the optical indices are optimized by varying the trial spectrum to generate the customized spectral profile. A radiation force parameter can be used to minimize unsafe build-up of light in spectral regions. Adaptations of color rendering parameters can be used in the optimization process. Smoothing parameters can be used to enable easier design of filter structures. A reflectance camera can be used to measure reflectance data at one or more pixels of a digital representation of an object to be illuminated.
Abstract:
The present invention provides a solid state intra-cavity absorption spectrometer comprising a solid-state gain device interspersed in an array of oscillators in a chamber to produce a wide area coherent high power source of Terahertz radiation. The source is then partitioned into two separate regions, one having a gain medium and one having a sample chamber that can be held a different pressure and is chemically isolated from the gain region thereby forming an intra-cavity absorption spectrometer.