Abstract:
A transmission system for a hybrid aircraft is driven by a plurality of driveshafts and drives a translational propulsion system. Each driveshaft is mounted to a pinion gear which mesh with an upper and lower counter-rotating gear. The upper and lower counter-rotating gears drive a respective upper and lower rotor shaft which powers a counter-rotating rotor system. A first angle is defined between a first and a second driveshaft while a second angle is defined between the second and a third driveshaft. The angle between the driveshafts are a whole number multiple of the formula: nullnull(CP/R)*(180/null). By so angularly locating the driveshafts, proper meshing of the pinion gears and the upper and lower counter-rotating gears is assured and tolerances are less stringent as the support structure is effective designed around optimal location of the driveshafts for gear meshing rather than vice versa.
Abstract:
A parafoil system for autonomously controlling the gliding descent of a payload/UAV from a launch point to a predetermined recovery area and manipulating the parafoil to execute a soft landing in the recovery area, a sensing means associated with the system for determining wind speed and direction, as well as altitude, heading and position of the system, a means housed within the system for processing information received from the sensing means to determine the gliding flight path from the launch point to a predetermined recovery area and the execution of a flare maneuver to achieve a soft landing, control surface means on the parafoil canopy, mechanical means coupling the information processing means with the control surface means for adjusting the control surface means to accomplish the steering to the recovery area during gliding flight and the flare maneuver during landing, and a power source in the payload/UAV.
Abstract:
An aircraft 1 comprising interchangeable wings 5 detachedly connected to a fuselage 3, each wing 5 containing the fuel and flight systems 13, 15 for engines 7 mounted to the wings 5, so that the fuselage 3 need contain no flight systems, simply a nullbusnull 23 for communication and the transfer of data between the wings.
Abstract:
A method and an apparatus for capturing a flying object (5) are revealed. The apparatus includes a generally linear fixture (2), such as a length of rope; a means for suspending (1) the fixture (2) across the path of the flying object (5); and one or more hooks (19) on the flying object (5). The method involves suspending the fixture (2) such that its orientation includes a component normal to the flying object's line of approach; striking the fixture (2) with the flying object (5), which causes the flying object (5) to rotate and decelerate, while the fixture (2) slides along a surface of the flying object (5) into a hook (19); capturing the fixture (2) in the hook (19); and retrieving the flying object (5) from the fixture (2).
Abstract:
Disclosed is an aircraft, configured to have a wide range of flight speeds, consuming low levels of power for an extended period of time, while supporting a communications platform with an unobstructed downward-looking view. The aircraft includes an extendable slat at the leading edge of the wing, and a reflexed trailing edge. The aircraft comprises a flying wing extending laterally between two ends and a center point. The wing is swept and has a relatively constant chord. The aircraft also includes a power module configured to provide power via a fuel cell. The fuel cell stores liquid hydrogen as fuel, but uses gaseous hydrogen in the fuel cell. A fuel tank heater is used to control the boil-rate of the fuel in the fuel tank. The aircraft of the invention includes a support structure including a plurality of supports, where the supports form a tetrahedron that affixes to the wing.
Abstract:
Disclosed is an aircraft, configured to have a wide range of flight speeds, consuming low levels of power for an extended period of time, while supporting a communications platform with an unobstructed downward-looking view. The aircraft includes an extendable slat at the leading edge of the wing, and a reflexed trailing edge. The aircraft comprises a flying wing extending laterally between two ends and a center point. The wing is swept and has a relatively constant chord. The aircraft also includes a power module configured to provide power via a fuel cell. The fuel cell stores liquid hydrogen as fuel, but uses gaseous hydrogen in the fuel cell. A fuel tank heater is used to control the boil-rate of the fuel in the fuel tank. The aircraft of the invention includes a support structure including a plurality of supports, where the supports form a tetrahedron that affixes to the wing.
Abstract:
A deployable wing that is folded so as to fit into a carrier such as an airplane that is released and automatically with the aid of parachutes to deploy and fly a given distance without assistance other than steering to reach a given destination and a propeller driven by a gas powered engine is actuated to propel the wing an extended distance. A guard is disposed adjacent to the propeller to assure that the lines of the parachutes do not get tangled into the propeller blades.
Abstract:
An improved VTOL/STOL free wing aircraft providing damping and absorption of shock landing loads upon landing. A pair of resilient struts is provided, projecting forwardly from the trailing edge of either side of the fuselage when the fuselage is tilted. Preferably, the aircraft includes a pair of articulated tail booms, the strut being a portion of the tail boom extending forward from the pivot axis of the tail boom. Landing wheels are disposed on the strut in tandem spaced relationship. The resiliency of the strut causes the strut to act as a leaf spring and thus dampen shock landing loads. Operatively secured to the bottom surface of the fixed wing portions and the forward portion of the landing gear struts is a pair of dashpots for absorbing the shock landing loads.
Abstract:
A VTOL/STOL free wing aircraft includes a free wing having wings on opposite sides of a fuselage connected to one another respectively for free rotation about a spanwise access. Improved control upon landing of the aircraft is achieved by utilizing a variable pitch propulsion system, enabling the pitch of the propeller to be varied corresponding to the speed of the aircraft and angle of approach upon descent.
Abstract:
A VTOL/STOL free wing aircraft includes a free wing having wings on opposite sides of a fuselage connected to one another respectively adjacent fixed wing inboard or center root sections fixedly attached to the fuselage for free rotation about a spanwise access. Horizontal and vertical tail surfaces are located at the rear end of a boom assembly rotatably connected to the fuselage. A gearing or screw rod arrangement controlled by the pilot or remote control operator selectively relatively pivots the fuselage in relation to the tail boom assembly to enable the fuselage to assume a tilted or nose up configuration to enable VTOL/STOL flight.