Abstract:
This invention discloses and claims a cost-effective, wafer-level package process for microelectromechanical devices (MEMS). Specifically, the movable part of MEMS device is encapsulated and protected while in wafer form so that commodity, lead-frame packaging can be used. An overcoat polymer, such as, epoxycyclohexyl polyhedral oligomeric silsesquioxanes (EPOSS) has been used as a mask material to pattern the sacrificial polymer as well as overcoat the air-cavity. The resulting air-cavities are clean, debris-free, and robust. The cavities have substantial strength to withstand molding pressures during lead-frame packaging of the MEMS devices. A wide range of cavities from 20 μm×400 μm to 300 μm×400 μm have been fabricated and shown to be mechanically stable. These could potentially house MEMS devices over a wide range of sizes. The strength of the cavities has been investigated using nano-indentation and modeled using analytical and finite element techniques. Capacitive resonators packaged using this protocol have shown clean sensing electrodes and good functionality.
Abstract:
A MEMS device comprises a membrane layer and a back-plate layer formed over the membrane layer. The membrane layer comprises an outer portion and an inner portion raised relative to the outer portion and a sidewall for connecting the inner portion and the outer portion. The sidewall is non-orthogonal to the outer portion.
Abstract:
Embodiments of the present disclosure provide systems and methods for producing micro electro-mechanical device packages. Briefly described, in architecture, one embodiment of the system, among others, includes a micro electro-mechanical device formed on a substrate layer; and a thermally decomposable sacrificial structure protecting at least a portion of the micro electro-mechanical device, where the sacrificial structure is formed on the substrate layer and surrounds a gas cavity enclosing an active surface of the micro electro-mechanical device. Other systems and methods are also provided.
Abstract:
Polymers, methods of use thereof, and methods of decomposition thereof, are provided. One exemplary polymer, among others, includes, a photodefinable polymer having a sacrificial polymer and a photoinitiator.
Abstract:
Methods for Implementation of a Switching Function in a Microscale Device and for Fabrication of a Microscale Switch. According to one embodiment, a method is provided for implementing a switching function in a microscale device. The method can include providing a stationary electrode and a stationary contact formed on a substrate. Further, a movable microcomponent suspended above the substrate can be provided. A voltage can be applied between the between a movable electrode of the microcomponent and the stationary electrode to electrostatically couple the movable electrode with the stationary electrode, whereby the movable component is deflected toward the substrate and a movable contact moves into contact with the stationary contact to permit an electrical signal to pass through the movable and stationary contacts. A current can be applied through the first electrothermal component to produce heating for generating force for moving the microcomponent.
Abstract:
Embodiments of the present disclosure provide systems and methods for producing micro electro-mechanical device packages. Briefly described, in architecture, one embodiment of the system, among others, includes a micro electro-mechanical device formed on a substrate layer; and a thermally decomposable sacrificial structure protecting at least a portion of the micro electro-mechanical device, where the sacrificial structure is formed on the substrate layer and surrounds a gas cavity enclosing an active surface of the micro electro-mechanical device. Other systems and methods are also provided.
Abstract:
A process for making a latching zip-mode actuated mono wafer MEMS switch especially suited to capacitance coupled signal switching of microwave radio frequency signals is disclosed. The single wafer fabrication process used for the switch employs sacrificial layers and liquid removal of these layers in order to also provide needed permanent physical protection for an ultra fragile switch moving arm member. Latched operation of the achieved MEMS switch without use of conventional holding electrodes or magnetic fields is also achieved. Fabrication of a single MEMS switch is disclosed however large or small arrays may be achieved. A liquid removal based fabrication process is disclosed.
Abstract:
Polymers, methods of use thereof, and methods of decomposition thereof, are provided. One exemplary polymer, among others, includes, a photodefinable polymer having a sacrificial polymer and a photoinitiator.
Abstract:
A microchip with capillaries and method for making same is described. A sacrificial material fills microchannels formed in a polymeric substrate, the filled microchannels are covered by a top cover to form filed capillaries, and the sacrificial material is removed to form the microcapillaries. The sacrificial material fills the microchannels as a liquid whereupon it becomes solid in the microchannels, and is liquefied after the top cover is applied and affixed to remove the sacrificial material. The top cover may be solvent sealed on the substrate and of the same or different material as the substrate. The top cover may also be an in situ applied semipermeable membrane.
Abstract:
A method for manufacturing a three-dimensional structure includes forming a first structure having a relief pattern on a substrate, forming a sacrifice layer on the first structure such that the sacrifice layer can be filled in a concave part of the first structure and the sacrifice layer can cover a surface of a convex part of the first structure on a side opposite to the substrate, forming a second structure having a relief pattern on the sacrifice layer, and a fourth step of removing the sacrifice layer from between the first structure and the second structure, and thereby bringing the second structure into contact with the surface of the first structure.