Abstract:
Methods and devices are disclosed for acquiring depth resolved aberration information using principles of low coherence interferometry and perform coherence gated wavefront sensing (CG-WFS). The wavefront aberrations is collected using spectral domain low coherence interferometry (SD-LCI) or time domain low coherence interferometry (TD-LCI) principles. When using SD-LCI, chromatic aberrations can also be evaluated. Methods and devices are disclosed in using a wavefront corrector to compensate for the aberration information provided by CG-WFS, in a combined imaging system, that can use one or more channels from the class of (i) optical coherence tomography (OCT), (ii) scanning laser ophthalmoscopy, (iii) microscopy, such as confocal or phase microscopy, (iv) multiphoton microscopy, such as harmonic generation and multiphoton absorption. For some implementations, simultaneous and dynamic aberration measurements/correction with the imaging process is achieved. The methods and devices disclosed can provide wavefront sensing in the presence of stray reflections from optical interfaces.
Abstract:
Systems for extended depth frequency domain optical coherence tomography are provided including a detection system configured to sample spectral elements at substantially equal frequency intervals, wherein a spectral width associated with the sampled spectral elements is not greater than one-half of the frequency interval. Related methods are also provided herein.
Abstract:
Subject matter disclosed herein relates to measuring optical fibers or measuring devices comprising optical fibers and, in particular, to measuring a variation of refractive index of an optical fiber as a function of position and wavelength.
Abstract:
The invention relates to optical low-coherence reflectometry with spectral reception and may be used for obtaining images without coherent noise caused by self-interference of the radiation scattered from the studied object and by spurious reflections in the optical path of the system. Two or more consecutive measurements of the interference spectrum are made. During at least one measurement of the interference spectrum by means of the interference control unit the phase between the interfering parts of the radiation is modulated by a certain law during exposure, which results in averaging and, hence, zeroing of the cross-correlation (useful) component of the registered spectrum, and during at least one additional measurement of the interference spectrum, the phase between the interfering parts of the radiation is not modulated during exposure. The phase between the interfering parts of the radiation may be set to be different in additional measurements of the interference spectrum. The invention allows coherent noise to be fully eliminated without loss of the radiation power scattered by the object.
Abstract:
Interferometry system are disclosed that include a detector sub-system including a monitor detector, interferometer optics for combining test light from a test object with primary reference light from a first reference interface and secondary reference light from a second reference interface to form a monitor interference pattern on a monitor detector, wherein the first and second reference interfaces are mechanically fixed with respect to each other and the test light, a scanning stage configured to scan an optical path difference (OPD) between the test light and the primary and secondary reference light to the monitor detector while the detector sub-system records the monitor interference pattern for each of a series of OPD increments, and an electronic processor electronically coupled to the detector sub-system and the scanning stage, the electronic processor being configured to determine information about the OPD increments based on the detected monitor interference pattern.
Abstract:
An optical perturbation sensing system includes a probing beam incident on a medium with perturbations and a sensing beam redirected from the medium and incident on a surface area of a photodetector. A reference beam directed onto the photodetector surface forms, with the sensing beam, an interference pattern on the photodetector surface and a phase patterner with at least two phase regions across its section, generates different phases in different regions of the interference pattern. An array of photodetector elements detects each phase region of the interference pattern and a constructive combiner subtract pairs of the detected signals, squares the subtracted signal squares, and sums the squared signals to form a stronger detected signal with reduced intensity noise, reduced background noise, and reduced sensitivity to phase drifts.
Abstract:
In certain aspects, disclosed methods include combining reference light reflected from a reference surface with test light reflected from a test surface to form combined light, the test and reference light being derived from a common source, sinusoidally varying a phase between the test light and reference light, where the sinusoidal phase variation has an amplitude u, recording at least one interference signal related to changes in an intensity of the combined light in response to the sinusoidal variation of the phase, determining information related to the phase using a phase shifting algorithm that has a sensitivity that varies as a function of the sinusoidal phase shift amplitude, where the sensitivity of the algorithm at 2 u is 10% or less of the sensitivity of the algorithm at u.
Abstract:
This application describes designs, implementations, and techniques for controlling propagation mode or modes of light in a common optical path, which may include one or more waveguides, to sense a sample.
Abstract:
Methods, fourier domain optical coherence tomography (FDOCT) interferometers and computer program products are provided for removing undesired artifacts in FDOCT systems using continuous phase modulation. A variable phase delay is introduced between a reference arm and a sample arm of an FDOCT interferometer using continuous phase modulation. Two or more spectral interferograms having different phase delay integration times are generated. The spectral interferograms are combined using signal processing to remove the undesired artifacts. Systems and methods for switching between stepped and continuous phase shifting Fourier domain optical coherence tomography (FDOCT) and polarization-sensitive optical coherence tomography (PSOCT) are also provided herein.
Abstract:
Path imbalance measurement of the two arms fiber optic interferometer includes employing a current carrier signal to modulate the semiconductor laser light source of the interferometer to let it output interference signals to generate a carrier phase signal through path imbalance of the interferometer. Then, the interference signals are expanded to be the harmonic components of carrier phase signal frequency by Bessel function. Subsequently, we use the specific relation between the second and the fourth harmonic components of the interference signals to develop the theory of path imbalance measurement. The method mentioned above can measure a few decimeters of path imbalance and its accuracy can reach to a millimeter.