Abstract:
An apparatus for controlling a frequency analysis processing includes: a memory; and a processor coupled to the memory and configured to execute a fast Fourier transform process that includes performing a fast Fourier transform operation on data of two groups into which sensor data sensed at a first sampling frequency by a sensor is divided, and execute a change process that includes changing, in a case where results of butterfly operations of the fast Fourier transform operation are similar between the two groups, a sampling frequency at which the sensor operates to a second sampling frequency lower than the first sampling frequency.
Abstract:
A method and a lighting control system for automatically determining a calibration curve for use in daylight harvesting applications. The lighting control system comprises a light sensor configured for recording light levels and a load controller configured for provide a dimmed output to a lighting load. The calibration curve comprises a calibration slope (SC) defined by a calibration coordinate (CC) and a night coordinate (CN). The calibration coordinate (CC) comprises a calibration dimming level (DC) set by a user and a calibration light level (LC) recorded by the light sensor when the lighting load is set to the calibration dimming level (DC). The night coordinate (CN) comprises a night scene dimming level (DN) and a night scene light level (LN), wherein the night scene light level (LN) comprises a difference between a sunlight plus night scene light level (LNS) recorded by the light sensor when the lighting load is set to the night scene dimming level (DN) and a sunlight level (LS) recorded by the light sensor when the lighting load is turned off.
Abstract:
Disclosed herein are a system and method for controlling the temperature of a user. The wearable device may include a first temperature measurement unit configured to measure a temperature of a user and a control unit configured to calculate a temperature difference by comparing the temperature measured by the first temperature measurement unit with a previously stored temperature of the user at normal times, provide temperature measurement information to an external device if the calculated temperature difference is more than a reference temperature difference for a predetermined time, and receive service information for controlling the temperature of the user based on the temperature measurement information from the external device.
Abstract:
A flame detector includes an ultraviolet (UV) sensor to detect UV radiation emitted by a flame; a testing apparatus to periodically test function of the flame detector. The testing apparatus includes a UV light emitting diode (UVLED) emitter to emit a test signal and a mirror to reflect the test signal emitted from the UVLED emitter to the UV sensor. A method of testing an ultraviolet (UV) flame detector includes transmitting a test signal from a UV light emitting diode (UVLED) emitter. The test signal is reflected toward a UV sensor of the flame detector, and the test signal received at the UV sensor is evaluated.
Abstract:
The present invention is solar collection data device having a main housing with means to measure and record the sun's radiance over a period of time encased in the housing. The main housing is mounted to a platform. The platform has means to attach to a variety of surfaces, including a roof. A photovoltaic cell and a photo sensor are integrally formed in the cover of the main housing. The output of the photovoltaic cell and the photo sensor will be logged and used in determining the amount of sunlight reaching the unit.
Abstract:
A user-wearable device includes a front facing first light detector and a backside optical sensor, which faces the user's skin and includes a light source and a second light detector. The device also includes a skin tone detector and an ultraviolet (UV) exposure detector. The UV exposure detector is adapted to determine estimate(s) of a user's exposure to UV light in dependence on signal(s) produced using the first light detector, calibrate UV exposure threshold(s) in dependence on a skin tone metric produced using the skin tone detector, compare estimate(s) of a user's exposure to UV light to calibrated UV exposure threshold(s), and selectively trigger an alert in dependence on results of the comparison(s). The second light detector is also used to produce a photoplethysmography (PPG) signal from which measures heart rate (HR), heart rate variability (HRV), respiration rate (RR) or respiratory sinus arrhythmia (RSA) is/are produced.
Abstract:
A sensor arrangement includes an infrared sensor and at least one acceleration sensor. The infrared sensor is configured to detect infrared radiation, and to output infrared image data. The at least one acceleration sensor is configured to detect an instantaneous acceleration of the sensor arrangement, and to output acceleration data. The output of the infrared image data from the infrared sensor is blocked when the instantaneous acceleration of the sensor arrangement exceeds a preprogrammed threshold value.
Abstract:
Disclosed is a controlling apparatus for a dimming level of a light disposed on a ceiling surface, including: a sampling unit sampling an illumination value of a ceiling area depending on a change in a dimming level of the light; a communication unit receiving an illumination value of a floor area at a minimum dimming level of the light and an illumination value of the floor area at a maximum dimming level of the light; an estimation unit estimating an illumination value of the floor area at a current dimming level of the light based on an algorithm defined by using the illumination value of the floor area and the illumination value of the ceiling area at the minimum dimming level of the light, the illumination value of the floor area and the illumination value of the ceiling area at the maximum dimming level of the light, and the illumination value of the ceiling area at the current dimming level of the light; and a control unit controlling the dimming level of the light so that the estimated illumination value of the floor area and a target illumination value coincide with each other.
Abstract:
A two dimensional scanning laser system may automatically detect a laser, then align and calibrate itself to scan over the sensor area. The system may have a laser with a controller that may cause the laser to be directed over two dimensions, as well as a sensor apparatus. The laser may be controlled with a mirror system that may pivot in two directions, thus allowing the laser to be scanned over a two dimensional area. The sensor may be a point sensor, where the laser may be positioned in a constant direction, as well as a larger area sensor where the laser may be moved across the sensor area to detect objects in a two or three dimensional space. An alignment and calibration sequence may cause the laser to scan across its operational area and detect the location of one or more sensors.
Abstract:
The detection circuit comprises a photodiode connected to a readout circuitry. The photodiode and readout circuitry are connected by means of a transistor arranged to operate as a closed switch when the readout circuitry biases the photodiode in a predefined range and to operate as an open switch in the other cases.