Abstract:
In a total luminous flux measurement apparatus according to an embodiment, a total luminous flux emitted by an object is calculated based on a result of measuring illuminances using a measuring unit when providing relative movement between the object and an integrating unit to expose a substantially entire light emitting surface of the object to an inner space of the integrating unit. Specifically, under conditions that the object is disposed to penetrate the integrating unit from one sample hole to the other sample hole, a luminous flux of a portion of the object within the inner space of the integrating unit is measured, then the integrating unit is moved relative to the object, and a luminous flux of a portion accordingly contained in the inner space of the integrating unit is measured.
Abstract:
An optical emission spectroscopic (OES) instrument includes a spectrometer, a processor and an adjustable mask controlled by the processor. The adjustable mask defines a portion of an analytical gap imaged by the spectrometer. The instrument automatically adjusts the size and position of an opening in the mask, so the spectrometer images an optimal portion of plasma formed in the analytical gap, thereby improving signal and noise characteristics of the instrument, without requiring tedious and time-consuming manual adjustment of the mask during manufacture or use.
Abstract:
According to an embodiment, a measuring device for measuring a laser beam comprises a magnification lens system with a total of two lenses which are arranged in series in the beam path of the laser beam and whose foci are coinciding, as well as a camera which is arranged behind the two lenses in the focus of the last lens and includes an electronic image sensor which generates an electronic image of the magnified laser beam. The lenses together with the camera are adjustable along the beam path relative to a reference point of the measuring device, for the purpose of locating the beam waist of the laser beam and of determining a diameter profile of the laser beam. The measuring device further comprises an adapter enclosing the beam path for coupling the measuring device to a laser system which provides the laser beam. The adapter forms an abutment surface or the laser system, which is axially directed with respect to a beam axis of the laser beam, and permits the measuring device to be coupled in situ at the installation site of the laser system.
Abstract:
This invention provides a displacement measurement device, a displacement measurement method, and a thickness measurement device capable of easily ensuring a conjugate relationship between the light source and the diaphragm and capable of accurately measuring the change in distance with the testing target. In the displacement measurement device, the light from the laser diode is collected towards the pin hole of the diaphragm plate at the collective lens, and then sent to the objective lens through the pin hole. The light is reflected at a surface of work, and detected by a photodiode through the objective lens, the pin hole, the collective lens, and the half mirror. That is, the pin hole becomes a substantial light source, and becomes a diaphragm with respect to the incident light on the work. The spot diameter collected on the pin hole by the collective lens is greater than the diameter of the pin hole. The light receiving quantity signal of the return light component on a diaphragm plate, shown with an outlined arrow, is removed by a high-pass filter.
Abstract:
An optical sensor includes a light receiving device disposed in a housing, an exterior filter rotatably mounted to an attachment surface of the housing, and a light intercepting member which rotates along with a rotation of the exterior filter to adjust an amount of light incident on a light receiving surface of the light receiving device. In this optical sensor, the light intercepting member has a rotary shaft fixed at its center, and has a light adjusting mechanism for adjusting the amount of light incident on the light receiving surface of the light receiving device in a range in a direction of rotation around the rotary shaft. Accordingly, the sensitivity of the optical sensor can be arbitrarily adjusted with a high accuracy.