Abstract:
Embodiments of the present invention relates to a system for measuring trace species in a sample gas. The present invention uses an open-path configuration including an optical cell with mirrors at each end, a long slotted rod with holes in the end for an optical bean to pass through, and a slotted tube surrounding the slotted rod such that air can pass through the rod in a transverse direction when the slots are aligned. Embodiments of the present invention further includes a flow configuration for purging sample gas from the optical cell, and cleaning mirrors, with calibrated or zero air through inlets in front of each mirror.
Abstract:
An optical analysis tool includes an integrated computational element (ICE). The ICE includes a plurality of layers stacked along a first axis. Constitutive materials of the layers are electrically conductive and patterned with corresponding patterns. An arrangement of the patterns with respect to each other is related to a characteristic of a sample.
Abstract:
A method for determining structure from motion in hyperspectral imaging includes acquiring hyperspectral data cubes containing intensity data, the intensity data being stored in dimensions of the hyperspectral data cube including a first spatial dimension, a second spatial dimension, and a spectrum dimension; establishing a set of baseline spectral features from a data cube for tracking between data cubes; establishing a set of standard features from a data cube for tacking between data cubes; matching, between data cubes, respective baseline features and standard features; and extracting imaging device motion information based on relative positions of matched baseline and standard features.
Abstract:
Provided are a three-dimensional (3D) camera including a wavelength-variable light source for directly measuring transmittance and a method of measuring the transmittance. The 3D camera includes, as well as a light source, a transmission type shutter, and an image sensor, and a wavelength-variable light source capable of irradiating a light with a variable wavelength without being thermally affected by the light source, the image sensor, and the transmission type shutter. The wavelength-variable light source may directly measure a change in transmittance by irradiating light toward the transmission type shutter while the 3D camera operates.
Abstract:
An example embodiment may include a hyperspectral analyzation subassembly configured to obtain information for a sample. The hyperspectral analyzation subassembly may include one or more transmitters configured to generate electromagnetic radiation electromagnetically coupled to the sample, one or more sensors configured to detect electromagnetic radiation electromagnetically coupled to the sample, and an electromagnetically transmissive window. At least one of the sensors may be configured to detect electromagnetic radiation from the sample via the window. The hyperspectral analyzation subassembly may include an analyzation actuation subassembly configured to actuate at least a portion of the hyperspectral analyzation subassembly in one or more directions of movement with respect to the sample.
Abstract:
A waste plastic container recycling system and a method thereof are provided for determining whether the spectrum of a waste container to be recycled belongs to any one of spectrums of plastic materials and for classifying waste containers of different plastic materials since the plastic materials have the different spectral characteristics. Accordingly, the waste plastic container recycling system and the method thereof can accurately recognize the waste containers of different plastic materials regardless of the appearance, or damage, deformation or concealment of the label on the waste containers.
Abstract:
A spectral measurement method of the present invention includes: a measuring step of measuring optical spectra of some sections specified among a plurality of sections on a specimen; a scalar-value calculating step of calculating, for individual measured sections, scalar values that represent information contained in the obtained optical spectra; an interpolating step of interpolating scalar values of unmeasured sections by using the calculated scalar values and by using two types of interpolation methods; an identifying step of identifying sections in which absolute values of differences between the two scalar values interpolated by using the two types of interpolation methods are equal to or greater than a predetermined threshold; and a repeating step of re-executing steps from the measuring step to the identifying step after specifying the identified sections.
Abstract:
A system includes a computational system to receive a design of an integrated computational element (ICE) including specification of substrate and layers. Additionally, the system includes a deposition source to provide a deposition plume having a plume spatial profile, and a support having a cylindrical surface. The cylindrical surface of the support is spaced apart from the deposition source and has a shape that corresponds to the plume spatial profile in a particular cross-section orthogonal to a longitudinal axis of the cylindrical surface of the support, such that, when the substrate support, with the supported instances of the substrate distributed over the cylindrical surface of the substrate support, is translated relative to the deposition plume along the longitudinal axis of the cylindrical surface of the substrate support, thicknesses of instances of each of the deposited layers are substantially uniform across the plurality of instances of the ICE.
Abstract:
The present disclosure generally relates to systems, devices and methods for analyzing and processing samples or analytes. In one example configuration, a method of analyzing an analyte includes shaving a first layer of a plurality of layers of an analyte to expose a first surface of an analyte. The method includes positioning the first surface of the analyte over a window of a hyperspectral analyzation subassembly. The method further includes scanning the first surface of the analyte by the hyperspectral analyzation subassembly to obtain information regarding the analyte proximate the first surface. Other systems, devices and methods are disclosed herein.
Abstract:
A method for capturing hyperspectral images using a regular color camera. In the method, the camera takes multiple images of a scene, with the camera oriented differently for each image. For a camera carried by an aircraft or spacecraft, this allows hyperspectral imaging without the cost or weight of a hyperspectral camera.