Abstract:
Fast on-line electro-optical detection of wafer defects by illuminating with a short light pulse from a repetitively pulsed laser, a section of the wafer while it is moved across the field of view of an imaging system, and imaging the moving wafer onto a focal plane assembly, optically forming a continuous surface of photo-detectors at the focal plane of the optical imaging system. The continuously shorter than the pixel dwell time, such that there is effectively no image smear during the wafer motion. The laser pulse has sufficient energy and brightness to impart the necessary illumination to each sequentially inspected field of view required for creating an image of the inspected wafer die. A novel fiber optical illumination delivery system, which is effective in reducing the effects of source coherence is described. Other novel aspects of the system include a system for compensating for variations in the pulse energy of a Q-switched laser output, methods for autofocussing of the wafer imaging system, and novel methods for removal of repetitive features of the image by means of Fourier plane filtering, to enable easier detection of wafer defects.
Abstract:
An automated defect inspection system has been invented and is used on patterned wafers, whole wafers, broken wafers, partial wafers, sawn wafers such as on film frames, JEDEC trays, Auer boats, die in gel or waffle packs, MCMs, etc. and is specifically intended and designed for second optical wafer inspection for such defects as metalization defects (such as scratches, voids, corrosion, and bridging), diffusion defects, passivation layer defects, scribing defects, glassivation defects, chips and cracks from sawing, solder bump defects, and bond pad area defects.
Abstract:
A method and apparatus for time-resolved fluorescence spectroscopy is described in which laser light from a single pulse is used to excite fluorescent photons in a sample, which fluorescence is detected by a PMT optimized for linearity and response time to produce photoelectrons which generate a current at the PMT anode. This current is discharged through an R/C network to produce a voltage amplitude waveform which is converted to an optical image, intensified, stored and digitized. The digitized version of the optical image is processed in a data processor to calculate the true fluorescence impulse response.
Abstract:
A conveyance device supports and conveys an object. The conveyance device has a support portion in which an opening narrower than the object is provided at a position where the object is supported. A lighting device irradiates a first surface of the object with measurement light having a wavelength changing over time through the opening of the support portion. A light receiving device detects object light that is diffusely transmitted light emitted from a second surface of the object.
Abstract:
A system and method for adaptive illumination, the imaging system comprising an excitation source having a modulator, which generates a pulse intensity pattern having a first wavelength when the excitation source receives a modulation pattern. The modulation pattern is a data sequence of a structural image of a sample. An amplifier of the imaging system is configured to receive and amplify the pulse intensity pattern from the modulator. A frequency shift mechanism of the imaging system shifts the first wavelength of the pulse intensity pattern to a second wavelength. A laser scanning microscope of the imaging system receives the pulse intensity pattern having the second wavelength.
Abstract:
It is an object of the invention to improve processes, apparatuses and systems for measuring a measured variable. To this end, a measured variable is measured in a measuring process on the basis of an NV center as a quantum sensor. The NV center has a plurality of quantum states and is optically excitable on the basis of an occupancy of one of the quantum states into at least one excited state of the quantum states by means of an excitation light. The at least one excited state can decay at least with emission of emission light of the NV center. In the measuring process, the NV center is irradiated by the excitation light, the excitation light having a time periodic modulation, and a respective occupancy probability and/or a respective lifetime of the quantum states depending on the measured variable and the excitation light. A phase shift is determined between the emission light of the NV center and the modulation of the excitation light and a measurement value for the measured variable is determined on the basis thereof.
Abstract:
An apparatus and a method measure a reflectivity and/or transmittivity of an optical surface. The apparatus includes a pulsed coherent white light source for generating pulsed coherent white light, wherein the apparatus is adapted to irradiate the optical surface with at least a part of the generated pulsed coherent white light.
Abstract:
Systems and methods for sensing vibrational absorption induced photothermal effect via a visible light source. A Mid-infrared photothermal probe (MI-PTP, or MIP) approach achieves 10 mM detection sensitivity and sub-micron lateral spatial resolution. Such performance exceeds the diffraction limit of infrared microscopy and allows label-free three-dimensional chemical imaging of live cells and organisms. Distributions of endogenous lipid and exogenous drug inside single cells can be visualized. MIP imaging technology may enable applications from monitoring metabolic activities to high-resolution mapping of drug molecules in living systems, which are beyond the reach of current infrared microscopy.
Abstract:
Systems and methods for controlling fluids in microfluidic systems are generally described. In some embodiments, control of fluids involves the use of feedback from one or more processes or events taking place in the microfluidic system. For instance, a detector may detect one or more fluids at a measurement zone of a microfluidic system and one or more signals, or a pattern of signals, may be generated corresponding to the fluid(s). In some cases, the signal or pattern of signals may correspond to an intensity, a duration, a position in time relative to a second position in time or relative to another process, and/or an average time period between events. Using this data, a control system may determine whether to modulate subsequent fluid flow in the microfluidic system. In some embodiments, these and other methods can be used to conduct quality control to determine abnormalities in operation of the microfluidic system.
Abstract:
A super-resolution observation device includes an illumination optical system that focus a first illuminating light at optical frequency ω1 and a second illuminating light at optical frequency ω2 on a region of an observation object plane; a modulation unit that modulates a property of the first illuminating light heading toward the region at a modulation frequency fm; and an extraction unit that extracts a component at the optical frequency ω1 or ω2 from a light generated in the region according to the first illuminating light and the second illuminating light, the component of which the property changes at a frequency higher than the modulation frequency fm.