Abstract:
A pulsed compression reactor may include a reactor housing, a spring piston, and a driver piston. The reactor housing may define an interior volume, and may include a first passage and a second passage which lead to the interior volume. The spring piston may be positioned within the interior volume, wherein the spring piston and the reactor housing at least partially define a perimeter of a gas spring buffer chamber within the interior volume. The driver piston may be positioned within the interior volume, wherein the spring piston, the driver piston, and the reactor housing at least partially define a perimeter of a reaction chamber within the interior volume.
Abstract:
The disclosure pertains to an urea production plant and process using a thermal stripper, wherein the reaction mixture is separated in two parts, wherein the first part is supplied at least in part to the thermal stripper and the second part at least in part bypasses the thermal stripper and is supplied to a medium pressure recovery section.
Abstract:
The invention discloses a method for producing bio-fuel (BF) from a high-viscosity biomass using thermo-chemical conversion of the biomass in a production line (10) with pumping means (PM), heating means (HM) and cooling means (CM). The method has the steps of 1) operating the pumping means, the heating means and the cooling means so that the production line is under supercritical fluid conditions (SCF) to induce biomass conversion in a conversion zone (CZ) within the production line, and 2) operating the pumping means so that at least part of the production line is in an oscillatory flow (OF) mode. The invention is advantageous for providing an improved method for producing biofuel from a high-viscosity biomass. This is performed by an advantageous combination of two operating modes: supercritical fluid (SCF) conditions and oscillatory flow (OF).
Abstract:
An autoclave system comprises an autoclave vessel 210, for performing a leaching operation on sacrificial ceramic cores (not shown) and a storage vessel 220 for containing caustic leaching fluid 230. Interposed in a fluid flow path between the vessel 210 and the tank 220 is a heat exchange unit 240, comprising a body 250 containing a thermal exchange medium, in the form of water 260, and first and second thermal exchange conduits represented at 270 and 280. A thermal exchange medium inlet pipe 290a and a thermal exchange medium outlet pipe 290b are provided to the body so that the medium 260 can be replenished, preferably substantially continuously, to optimize thermal transfer efficiency.
Abstract:
Provided is a system for supplying a liquid (such as an irritative chemical solution) safely. This liquid supplying system comprises: (a) a means that creates a negative pressure in a treatment chamber by driving a first depressurizing means and depressurizing the treatment chamber; (b) a means that introduces the negative pressure of the treatment chamber to a measurement chamber; (c) a means that maintains the negative pressure introduced to the measurement chamber; (d) a means that sucks a liquid from a container into the measurement chamber by employing the negative pressure of the measurement chamber; and (e) a means that sucks the liquid of the measurement chamber into the treatment chamber by employing a vacuum in the treatment chamber.
Abstract:
Provided herein is a unidirectional blow down system for a high-pressure tubular reactor with a hyper that minimizes the tube wall metal temperature during a decomposition event wherein the system prevents the reactor walls from reaching a temperature capable of causing the tube metal to austenize. Also provided are methods of designing and methods of operating a unidirectional blowdown system.