Abstract:
The process and apparatus according to the invention allow the production of hydrocarbons and ammonia without the use of catalysts. For this purpose, waste gases containing CO2 or N2 from an upstream process are fed to compression reactors. In addition, hydrogen from an electrolyzer is fed to these reactors to enable hydrogenation of the fed substances. Methane, alcohols and ammonia, for example, can be produced by this process. In order to increase the yield of the process, it is planned to raise the reactant pressure with the aid of a compressor.
Abstract:
A reactor system for the production and/or treatment of particles in an oscillating process gas stream. The reactor system includes a reactor unit that has an upstream feed unit and a downstream discharge unit and a reactor that includes a multiple burner system that has a combustion chamber, an exhaust gas pipe that follows downstream from the combustion chamber, and a plurality of burners. A part of the burners of the multiple burner systems are suitable for production of the oscillating process gas stream. The burners of the multiple burner system are arranged in the combustion chamber of the reactor unit.
Abstract:
A pulse jet system and method is disclosed. In an example, the pulse jet system includes a combustion chamber, intake ports to deliver combustion agents to the combustion chamber, an expansion chamber to cool a combustion product following combustion of the combustion agents in the combustion chamber, and an exhaust to exit the cooled gas from the expansion chamber. In another example, the pulse jet system includes a combustion chamber with intake ports to deliver combustion agents to the combustion chamber, wherein the combustion chamber is part of a four cycle engine. The pulse jet system also includes an expansion chamber to cool a combustion product following combustion of the combustion agents in the combustion chamber.
Abstract:
An ethylene oligomerization system is useful for creating 1-butene from ethylene in the presence of an ethylene oligomerization catalyst. The ethylene oligomerization system includes an internal baffle single pass reactor, a separation system and an exterior motion driver. The exterior motion driver is operable to induce unsteadiness in the flow of the process fluid contained in the internal baffle single pass reactor by transferring motion into the process fluid. An ethylene oligomerization process is useful for creating a refined 1-butene product from ethylene using the ethylene oligomerization system.
Abstract:
A pulse jet system and method is disclosed. In an example, the pulse jet system includes a combustion chamber, intake ports to deliver combustion agents to the combustion chamber, an expansion chamber to cool a combustion product following combustion of the combustion agents in the combustion chamber, and an exhaust to exit the cooled gas from the expansion chamber. In another example, the pulse jet system includes a combustion chamber with intake ports to deliver combustion agents to the combustion chamber, wherein the combustion chamber is part of a four cycle engine. The pulse jet system also includes an expansion chamber to cool a combustion product following combustion of the combustion agents in the combustion chamber.
Abstract:
Spheroidal polymer beads having a uniform size are prepared by polymerizing uniformly sized monomer droplets formed by the vibratory excitation of a laminar jet of monomeric material flowing in a continuous liquid medium containing a suitable suspending agent. For example, a laminar jet of a monomer mixture comprising a monovinylidene aromatic such as styrene, a polyvinylidene aromatic such as divinylbenzene and a polymerization initiator can be subjected to vibratory excitation and the resulting monomer droplets polymerized to yield copolymer beads having a narrow particle size range distribution. The resulting copolymer beads can be employed to prepare high yields of ion exchange resins exhibiting superior properties, particularly in continuous ion exchange operations.
Abstract:
The present invention concerns a method and an apparatus (10, 20) for a continuous preparation of organic peroxides, with the reactor comprising at least one flow channel (1, 1a, 1b) configured as a reaction zone; an inlet system (2) in fluid communication with a first end of the at least one flow channel and configured for introducing two or more substances or a combination of substances into the at least one flow channel; an outlet system (3) in fluid communication with a second end of the at least one flow channel, the second end being located downstream of the first end and the outlet system being configured for extracting a reaction product present at the second end; an oscillatory system (4, 5) configured for superimposing an oscillatory flow on the flow of substances passing through the at least one flow channel, the oscillatory being effected in at least a section of the at least one flow channel; and a controller configured to implement the method by controlling the inlet system to introduce, according to a first time characteristic, at least two substances or a combination of substances into the at least one flow channel, the oscillatory system to superimpose an oscillatory flow on at least a part of the flow of substances passing through the at least one flow channel, and the outlet system to extract, on an ongoing basis, the reaction product formed in the flow channel from the substances introduced such that the output mass flow rate corresponding to the sum of the input mass flow rates.
Abstract:
The present application relates to an improved apparatus for mixing intensification in multiphase systems, which can be operating in continuous or batch mode. The apparatus is based on oscillatory flow mixing (OFM) and comprises a novel oscillatory flow reactor (OFR) provided with Smooth Periodic Constrictions (SPCs). The apparatus can be fully thermostatized and it is based on a modular system, in order to achieve most of the industrial application. The new OFR is suitable for multiphase applications such as screening reactions, bioprocess, gas-liquid absorption, liquid-liquid extraction, precipitation and crystallization. Regarding its size and geometry and the ability to operate at low flow rates, reagent requirements and waste are significantly reduced, as well as the operating costs, compared to the common reactor, such as continuous stirred tank reactor (CSTR) and the “conventional” OFR. The disclosed apparatus fulfil some of the gaps observed in the “conventional” OFR as well as in meso-OFR known. Excellent heat and mass transfer is obtained. The scale-up is predictable.
Abstract:
Monomer solution and liquid solution immiscible with the monomers in the monomer solution are cocurrently jetted upwardly in a pulsating manner in a reaction vessel. Monomer droplets are allowed to rise up in a controlled and smooth manner under the dynamic forces exerted by differential flow rate and differential pressure between the monomer and liquid solutions and the differential densities between the monomer and liquid solutions without causing coalescence, agglomeration and breakup of the monomer droplets and to stabilize by partial polymerization of the droplets at 50-60° C. The monomer droplets flow out horizontally into a polymerization reactor and get polymerized in the polymerization reactor under agitation at 80-85° C. The polymer beads are dried at 80-100° C. and sieved.
Abstract:
The invention discloses a method for producing bio-fuel (BF) from a high-viscosity biomass using thermo-chemical conversion of the biomass in a production line (10) with pumping means (PM), heating means (HM) and cooling means (CM). The method has the steps of 1) operating the pumping means, the heating means and the cooling means so that the production line is under supercritical fluid conditions (SCF) to induce biomass conversion in a conversion zone (CZ) within the production line, and 2) operating the pumping means so that at least part of the production line is in an oscillatory flow (OF) mode. The invention is advantageous for providing an improved method for producing biofuel from a high-viscosity biomass. This is performed by an advantageous combination of two operating modes: supercritical fluid (SCF) conditions and oscillatory flow (OF).