Abstract:
A method of forming a Micro-Electro-Mechanical System (MEMS) includes forming a lower electrode on a first insulator layer within a cavity of the MEMS. The method further includes forming an upper electrode over another insulator material on top of the lower electrode which is at least partially in contact with the lower electrode. The forming of the lower electrode and the upper electrode includes adjusting a metal volume of the lower electrode and the upper electrode to modify beam bending.
Abstract:
A micromechanical component, e.g., a switch, includes a substrate having at least one recess, at least two electrically conductive contact surfaces provided in the region of the recess, and an actuator. The contact surfaces are able to be brought into contact with one another for electrical conduction with the aid of the actuator.
Abstract:
A process for making a latching zip-mode actuated mono wafer MEMS switch especially suited to capacitance coupled signal switching of microwave radio frequency signals is disclosed. The single wafer fabrication process used for the switch employs sacrificial layers and liquid removal of these layers in order to also provide needed permanent physical protection for an ultra fragile switch moving arm member. Latched operation of the achieved MEMS switch without use of conventional holding electrodes or magnetic fields is also achieved. Fabrication of a single MEMS switch is disclosed however large or small arrays may be achieved. A liquid removal based fabrication process is disclosed.
Abstract:
An actuator element includes: a piezoelectric body; a pair of electrodes mutually opposing to each other via the piezoelectric body; a diaphragm to which the piezoelectric body sandwiched between the pair of electrodes is bonded; and a base substrate arranged to oppose a movable part including the piezoelectric body and the diaphragm, the movable part being displaced in a direction toward the base substrate by application of a drive voltage to the pair of electrodes, wherein polarization (Pr)-electric field (E) hysteresis characteristics of the piezoelectric body are biased with respect to an electric field, and by application of a voltage in an opposite direction to the drive voltage, to the pair of electrodes, the movable part is displaced in a direction away from the base substrate.
Abstract:
A MEMS apparatus has a MEMS device sandwiched between a base and a circuit chip. The movable member of the MEMS device is attached at the side up against the circuit chip. The movable member may be mounted on a substrate of the MEMS device or formed directly on a passivation layer on the circuit chip. The circuit chip provides control signals to the MEMS device through wire bonds, vias through the MEMS device or a conductive path such as solder balls external to the MEMS device.
Abstract:
It is made possible to provide a MEMS device that has a low operation voltage, a large contact pressure force, and a large separation force. A MEMS device includes: a substrate; a supporting unit that is provided on the substrate; a fixed electrode that is provided on the substrate; an actuator that includes a first electrode, a first piezoelectric film formed on the first electrode, and a second electrode formed on the first piezoelectric film, one end of the actuator being fixed onto the substrate with the supporting unit, the actuator extending in a direction connecting the supporting unit and the fixed electrode, the first electrode being located to face the fixed electrode; and a stopper unit that is located above a straight line connecting the supporting unit and the fixed electrode, and is located on the substrate so as to face the first electrode.
Abstract:
The present invention provides a bi-directional microelectromechanical element, a microelectromechanical switch including the bi-directional element, and a method to reduce mechanical creep in the bi-directional element. In one embodiment, the bi-directional microelectromechanical element includes a cold beam having a free end and a first end connected to a cold beam anchor. The cold beam anchor is attached to a substrate. A first beam pair is coupled to the cold beam by a free end tether and is configured to elongate when heated thereby to a greater temperature than a temperature of the cold beam. A second beam pair is located on an opposing side of the cold beam from the first beam pair and is coupled to the first beam pair and the cold beam by the free end tether. The second beam pair is configured to elongate when heated thereby to the greater temperature.
Abstract:
A MEMS apparatus has a MEMS device sandwiched between a base and a circuit chip. The movable member of the MEMS device is attached at the side up against the circuit chip. The movable member may be mounted on a substrate of the MEMS device or formed directly on a passivation layer on the circuit chip. The circuit chip provides control signals to the MEMS device through wire bonds, vias through the MEMS device or a conductive path such as solder balls external to the MEMS device.
Abstract:
Systems and methods for depositing a plurality of droplets in a three-dimensional array are disclosed. The array can comprise a first type of droplets disposed to form a support structure and a second type of droplets forming a conductive seed layer on the support structure. A structure material can be electrodeposited onto the seed layer to create a three-dimensional structure.
Abstract:
It is made possible to provide a MEMS device that has a low operation voltage, a large contact pressure force, and a large separation force. A MEMS device includes: a substrate; a supporting unit that is provided on the substrate; a fixed electrode that is provided on the substrate; an actuator that includes a first electrode, a first piezoelectric film formed on the first electrode, and a second electrode formed on the first piezoelectric film, one end of the actuator being fixed onto the substrate with the supporting unit, the actuator extending in a direction connecting the supporting unit and the fixed electrode, the first electrode being located to face the fixed electrode; and a stopper unit that is located above a straight line connecting the supporting unit and the fixed electrode, and is located on the substrate so as to face the first electrode.