Abstract:
A method for manufacturing a micromechanical device, in particular a micromechanical vibrating-mirror device, having the following steps: making available a three-layer structure having a first layer, a second layer and a third layer, the second layer lying between the first and the third layers; etching through the first layer up to the second layer to produce an island region, lying on the second layer, which is joined to region of the first layer surrounding the island region by way of one or more connecting webs, and etching through a region of the third layer up to the second layer and removing a region of the second layer below the island region in such a way that the island region can perform movements, preferably torsional vibrations, about the one or more connecting webs, the torsional vibrations having such an amplitude that a part of the island region extends into the etched-through region of the third layer.
Abstract:
This patent relates to the fabrication of diaphragm-based microstructures used primarily for sensing physical phenomena by detecting a change in deflection, resonance, or curvature of the diaphragm. The methods of fabrication described and claimed herein relate primarily to diaphragm-based diaphragms made of silicon, either single crystal or polycrystalline in form, although other materials may be used.
Abstract:
An analysis method of a device through a MEMS sensor is provided in which the MEMS sensor includes a control unit and a sensing assembly coupled to the device. The analysis method includes acquiring, through the sensing assembly, first data indicative of an operative state of the device. Testing is performed for the presence of a first abnormal operating condition of the device. If the first abnormal operating condition of the device is confirmed, a self-test of the sensing assembly is performed to generate a quantity indicative of an operative state of the sensing assembly. The self-test includes acquiring, through the sensing assembly, second data indicative of the operative state of the sensing assembly, generating a signature according to the second data, and processing the signature through deep learning techniques to generate said quantity.
Abstract:
The invention relates to a sensing module and a manufacturing method thereof, which firstly provides a transparent substrate, and then a sensor, a colloid, and an optical cover body disposed on a first surface of the transparent substrate. The colloid is surrounded the encrypted chip and is connected with the transparent substrate and the optical cover. Finally, a light source irradiates the colloid through a second surface of the transparent substrate to cure the colloid for obtaining the sensing module.
Abstract:
A die-wrapped packaged device includes at least one flexible substrate having a top side and a bottom side that has lead terminals, where the top side has outer positioned die bonding features coupled by traces to through-vias that couple through a thickness of the flexible substrate to the lead terminals. At least one die includes a substrate having a back side and a topside semiconductor surface including circuitry thereon having nodes coupled to bond pads. One of the sides of the die is mounted on the top side of the flexible circuit, and the flexible substrate has a sufficient length relative to the die so that the flexible substrate wraps to extend over at least two sidewalls of the die onto the top side of the flexible substrate so that the die bonding features contact the bond pads.
Abstract:
A device includes: a micromechanical sensing structure configured to provide an electrical detection quantity as a function of a load; and a package enclosing the micromechanical sensing structure and providing a mechanical and electrical interface with respect to an external environment. The package includes a housing structure defining a cavity housing the micromechanical sensing structure; and a package coating that coats, at least in part, the housing structure, the package coating including a mechanical interface configured to transfer, in a uniform manner, the load on the housing structure and on the micromechanical sensing structure, wherein the housing structure includes a deformable layer interposed and in contact between the micromechanical sensing structure and the package coating, and wherein the deformable layer defines a mechanical-coupling interface.
Abstract:
Certain embodiments of the present disclosure relate to a sensor assembly including a substrate having an outer region, an inner region, and a middle region between the outer region and the inner region. The substrate further includes electrical contact pads on at least the inner region. The sensor assembly further includes a housing coupled to the substrate at the middle region or the outer region to provide a hermetic seal. The sensor assembly further includes a sensor die bonded to the substrate at the inner region. A metal bond bonds electrodes of the sensor die to the electrical contact pads. The metal bond includes platinum, and/or one or more metals selected from tin, indium, copper, aluminum, and/or nickel.
Abstract:
A downhole sensor system includes a first sensor package having a substrate, an integrated circuit chip mounted to the substrate, the integrated circuit chip including a processor, a transducer chip mounted to the integrated circuit chip, and a plurality of sensors configured to measure at least shock, pressure, temperature, and humidity. At least one of the plurality of sensors is mounted to the transducer chip such that a stack is formed at least from the substrate, the integrated circuit, the transducer chip, and the sensor. The plurality of sensors are in communication with the processor.
Abstract:
Various aspects of this disclosure comprise systems and methods for synchronizing sensor data acquisition and/or output. For example, various aspects of this disclosure provide for achieving a desired level of timing accuracy in a MEMS sensor system, even in an implementation in which timer drift is substantial.
Abstract:
A multi-device module, comprising: a first substrate, which houses a first MEMS transducer, designed to transduce a first environmental quantity into a first electrical signal, and an integrated circuit, coupled to the first MEMS transducer for receiving the first electrical signal; a second substrate, which houses a second MEMS transducer, designed to transduce a second environmental quantity into a second electrical signal; and a flexible printed circuit, mechanically connected to the first and second substrates and electrically coupled to the integrated circuit and to the second MEMS transducer so that the second electrical signal flows, in use, from the second MEMS transducer to the integrated circuit.