Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A micromachined fluid handling device having improved properties. The valve is made of reinforced parylene. A heater heats a fluid to expand the fluid. The heater is formed on unsupported silicon nitride to reduce the power. The device can be used to form a valve or a pump. Another embodiment forms a composite silicone/parylene membrane. Another feature uses a valve seat that has concentric grooves for better sealing operation.
Abstract:
High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers, thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.
Abstract:
A microfluidic device adapted for use with a power source is disclosed. The device includes a substrate and a heater member. The substrate and heater member form a first portion. A second portion is formed adjacent to the first portion. The second portion includes a high activating power polymer portion, at least one resin layer and a shield member. The second portion is selectively shaped to form a thermal expansion portion. A diaphragm member encapsulates the thermal expansion portion so that when power is applied to the heater portion, the high activating power polymer expands against the diaphragm member, causing the diaphragm member to deflect. This device is adapted for use as a microactuator or a blocking microvalve.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
The present disclosure describes a Parylene micro check valve including a micromachined silicon valve seat with a roughened top surface to which a membrane cap is anchored by twist-up tethers. The micro check valve is found to exhibit low cracking pressure, high reverse pressure, low reverse flow leakage, and negligible membrane-induced flow resistance when used as a valve over a micro orifice through which flow liquid and gas fluids.
Abstract:
A microelectromechanical (MEMS) device is provided that includes a microelectronic substrate and a thermally actuated microactuator and associated components disposed on the substrate and formed as a unitary structure from a single crystalline material, wherein the associated components arc actuated by the microactuator upon thermal actuation thereof. For example, the MEMS device may be a valve. As such, the valve may include at least one valve plate that is controllably brought into engagement with at least one valve opening in the microelectronic substrate by selective actuation of the microactuator. While the MEMS device can include various microactuators, the microactuator advantageously includes a pair of spaced apart supports disposed on the substrate and at least one arched beam extending therebetween. By heating the at least one arched beam of the microactuator, the arched beams will further arch such that the microactuator moves between a closed position in which the valve plate sealingly engages the valve opening and an open position in which the valve plate is at least partly disengaged from and does not seal the valve opening. The microactuator may further include metallization traces on distal portions of the arched beams to constrain the thermally actuated regions of arched beams to medial portions thereof. The valve may also include a latch for maintaining the valve plate in a desired position without requiring continuous energy input to the microactuator. An advantageous method for fabricating a MEMS valve having unitary structure single crystalline components is also provided.
Abstract:
A MEMS actuator is provided that produces significant forces and displacements while consuming a reasonable amount of power. The MEMS actuator includes a microelectronic substrate, spaced apart supports on the substrate and a metallic arched beam extending between the spaced apart supports. The MEMS actuator also includes a heater for heating the arched beam to cause further arching of the beam. In order to effectively transfer heat from the heater to the metallic arched beam, the metallic arched beam extends over and is spaced, albeit slightly, from the heater. As such, the MEMS actuator effectively converts the heat generated by the heater into mechanical motion of the metallic arched beam. A family of other MEMS devices, such as relays, switching arrays and valves, are also provided that include one or more MEMS actuators in order to take advantage of its efficient operating characteristics. In addition, a method of fabricating a MEMS actuator is further provided.
Abstract:
A laminated structure includes a wafer member with a membrane attached thereto, the membrane being formed of substantially hydrogen-free boron nitride having a nominal composition B.sub.3 N. The structure may be a component in a mechanical device for effecting a mechanical function, or the membrane may form a masking layer on the wafer. The structure includes a body formed of at least two wafer members laminated together with a cavity formed therebetween, with the boron nitride membrane extending into the cavity so as to provide the structural component such as a support for a heating element or a membrane in a gas valve. In another aspect borom is selectively diffused from the boron nitride into a surface of a silicon wafer. The surface is then exposed to EDP etchant to which the diffusion layer is resistant, thereby forming a channel the wafer member with smooth walls for fluid flow.