Abstract:
An optical measurement system includes an integrating sphere having a reflecting surface on its inner wall and having a first window. The optical measurement system further includes a support member for supporting a light source at a substantially central position of the integrating sphere, and a first baffle arranged on a line connecting the first window and the light source supported by the support member. The support member is connected, in a region opposite to the first window with respect to the light source, to the inner wall of the integrating sphere.
Abstract:
A luminance test system includes a plurality of LEDs, a microcontroller, a plurality of light sensors, a plurality of shielding members, a plurality of AD converters, a MCU and a display module. Each of the plurality of light sensors detects a luminance of one of the plurality of LEDs to generate an analog luminance signal. Each of the shielding members receives one of the plurality of LEDs and one of the plurality of light sensors. Each of the plurality AD converters converts the analog luminance signal into a digital luminance signal. The plurality of AD converters in turn transmit the digital luminance signal to the MCU. The display module displays a luminance value of each of the plurality of LEDs according to the digital luminance signal.
Abstract:
In one embodiment, a quantum dot based radiation source includes a housing having a wall defining a cavity therein, a plurality of quantum dots disposed on an inner surface of the wall of the housing, and a radiation excitation source in optical communication with the housing and configured to output radiation to excite the plurality of quantum dots to emit radiation in a desired wavelength range. The quantum dot based radiation source can be used in a calibration system or calibrator, for example to calibrate a detector.
Abstract:
A system for measuring an optical spectral response of a photoelectric device under test (DUT) includes a spectrally programmable light source including in optically coupled sequence a broadband light source for emitting light, a dispersive element for dispersing light, and a spatial light modulator for controlling an intensity and a spectra of the light to provide a spectrally programmable light beam. A light distributing device having at least one input portion is coupled to receive the spectrally programmable light beam and includes a light distributing structure for distributing the spectrally programmable light beam in a known ratio to a first area and at least a second area. A reference detector having a reference output positioned at the first area, and the DUT is positioned at the second area. Data acquisition electronics and a processor can receive simultaneously generated output signals from the DUT and the reference detector to correct for intensity variation in the spectrally programmable light beam in determining the optical spectral response of the DUT.
Abstract:
A method for testing light-emitting devices in a batch-wise, associated with a system for the same purpose, comprises the steps of: preparing the light-emitting devices on a moving carrier unit in a manner of aligning a predetermined longitudinal direction of the light-emitting devices with a predetermined transportation direction of the moving carrier unit, each of the light-emitting devices further having plural light-emitting elements; transporting orderly the light-emitting devices to pass a test area on a base of the system, in which the base energizes only the light-emitting elements within the test area; and, a solar cell module detecting continuously the energized light-emitting elements within the test area and further forming signals with respect to photo energy received in the test area.
Abstract:
A concave cell for the collection of radiated light including a body with a concave surface and an unmodified flat surface opposite thereto, and a reflective surface coupled to the body across from the concave surface, said reflective surface including an opening and a photo detector operatively coupled thereto. A method of collecting light by reflecting light inside the concave cell, striking the light at the concave surface, scattering the light at the concave surface, and registering the scattered light with the photo detector. A method of increasing uniformity of light registered in a photo detector. A method of making a concave cell.
Abstract:
A high-speed optical sensing device is provided in the present invention. The high-speed optical sensing device has an optical detector, a lens set, and a beam splitter. The optical detector is utilized for detecting luminous intensity. The lens set is utilized for concentrating light beams toward a color analyzer. The beam splitter is aligned to the illuminating device to be detected and is utilized to separate the light beam generated by the illuminating device to the optical detector and the lens set simultaneously.
Abstract:
On-wafer test systems and methods for light-emitting devices, such as light-emitting diodes (LEDs), are provided. The test system may be designed, for example, to characterize the light output from the LED die (e.g., power in Lumens).
Abstract:
The present invention relates to an integrating sphere for measuring a light-emitting property of a light source, and more particularly, to an integrating sphere having a means for controlling temperature inside the integrating sphere. An integrating sphere for measuring an optical property of a light source according to the present invention has a substantially spherical hollow space formed therein; a first through-hole provided such that a wire for supplying electric power to the light source installed inside the hollow space of the integrating sphere passes therethrough; and a second through-hole provided such that temperature-controlled air is supplied into the hollow space of the integrating sphere therethrough. A light source support, which has one end disposed at the center of the hollow space of the integrating sphere and the other end fixed to an inner peripheral surface so as to hermetically seal the first through-hole of the integrating sphere, is installed within the hollow space. The integrating sphere includes an air supply tube fixed to an outer peripheral surface of the integrating sphere where the second through-hole is formed, so that air can be supplied to the interior of the integrating sphere through the second through-hole; an air supply means for supplying air to the air supply tube; a temperature control means for controlling the temperature of air being supplied from the air supply means and passing through the air supply tube; and a shielding plate installed to be spaced apart by a predetermined distance from the second through-hole.
Abstract:
The present invention relates to an integrating sphere for measuring a light-emitting property of a light source, and more particularly, to an integrating sphere having a means for controlling temperature inside the integrating sphere. An integrating sphere for measuring an optical property of a light source according to the present invention has a substantially spherical hollow space formed therein; a first through-hole provided such that a wire for supplying electric power to the light source installed inside the hollow space of the integrating sphere passes therethrough; and a second through-hole provided such that temperature-controlled air is supplied into the hollow space of the integrating sphere therethrough. A light source support, which has one end disposed at the center of the hollow space of the integrating sphere and the other end fixed to an inner peripheral surface so as to hermetically seal the first through-hole of the integrating sphere, is installed within the hollow space. The integrating sphere includes an air supply tube fixed to an outer peripheral surface of the integrating sphere where the second through-hole is formed, so that air can be supplied to the interior of the integrating sphere through the second through-hole; an air supply means for supplying air to the air supply tube; a temperature control means for controlling the temperature of air being supplied from the air supply means and passing through the air supply tube; and a shielding plate installed to be spaced apart by a predetermined distance from the second through-hole.