Abstract:
Methods and apparatuses for backlight calibration are described. The apparatus 100 comprises a backlight unit 102 comprising a plurality of light sources 120, at least one photo-sensor 103 adapted to measure the light emitted by the backlight unit 102, a photo-sensor controller 112 coupled to the photo-sensor 103 for controlling the photo-sensor(s) 103, a backlight driving circuit 104 coupled to the light sources 120 for providing individual driving on each light source, a signal generator 114 coupled to the photo-sensor controller 112 and the backlight driving circuit 104 for controlling the operation timing of photo-sensors 103 and each of the light source 120 such that lighting conditions from each of the light source can be acquired, and a processing unit 111 coupled to the photo-sensor 103 and the backlight driving circuit 104 for analyzing the measurement data from the photo-sensors 103 and providing an adjustment signal to the backlight driving circuit 104 to achieve uniform lighting conditions of the backlight unit 102. Also described is a method comprising the steps of providing saved settings for backlight driver, providing a modified timing sequence to backlight driver and photo sensor 202, measuring light conditions of each individual light source or each individual group of light sources in backlight unit 203, comparing measurement data with predefined light conditions 205, calculating the adjustment required on backlight drivel to achieve desired light conditions, and saving calculated adjustment as new settings for backlight driver 207.
Abstract:
The invention relates to a method and a device for screen calibration for the true-to-original reproduction of surface colors, the spectral reflection distribution of which is known, wherein by setting parameters the screen can be influenced using software and an electronic controller in each partial region of the screen. The invention is characterized in that an observer adapts the reproduced color impression of the screen to the color impression of an original in each partial region of the screen, wherein the original is compared to the screen colors immediately thereafter on the screen surface and the screen parameters are varied until the color impressions of the original and of the screen appear identical to the observer on the respectively viewed partial screen, viewed from a predefined observer angle, and the settings performed are stored in a screen profile.
Abstract:
Color calibration of color image rendering devices, such as large color displays, which operate by either projection or emission of images, utilize internal color measurement instrument or external color measurement modules locatable on a wall or speaker. A dual use camera is provided for a portable or laptop computer, or a cellular phone, handset, personal digital assistant or other handheld device with a digital camera, in which one of the camera or a display is movable with respect to the other to enable the camera in a first mode to capture images of the display for enabling calibration of the display, and in a second mode for capturing image other than of the display. The displays may represent rendering devices for enabling virtual proofing in a network, or may be part of stand-alone systems and apparatuses for color calibration. Improved calibration is also provided for sensing and correcting for non-uniformities of rendering devices, such as color displays, printer, presses, or other color image rendering device.
Abstract:
Improved methods are provided for calibrating color on a color display coupled to a computer, which are useful for obtaining calibrated data in a virtual proof network for enabling different color devices to render consistent color. Methods involve user interactions with screens on the display to set color display parameters. An apparatus is also provided for calibrating a sensor which may be used for measuring color of a display in one or more of these methods.
Abstract:
Improved methods are provided for calibrating color on a color display coupled to a computer, which are useful for obtaining calibrated data in a virtual proof network for enabling different color devices to render consistent color. Methods involve user interactions with screens on the display to set color display parameters. An apparatus is also provided for calibrating a sensor which may be used for measuring color of a display in one or more of these methods.
Abstract:
An optical property measurement apparatus includes: a main body which includes a plane-shape surface that is so disposed as to face the display portion; an optical sensor which receives light directed from an opening that is formed through the plane-shape surface; and a support portion which is disposed on a side of the plane-shape surface and keeps a constant distance between the display portion and the plane-shape surface; wherein a light shield portion that is so disposed as to enclose a circumferential area of the opening of the plane-shape surface and shields entrance of light from a region other than a measurement target region of the display portion when the optical property is measured.
Abstract:
In one embodiment, light having a first spectrum is filtered from a mixed light. Light having a second spectrum, different from the first spectrum, is also filtered from the mixed light. An intensity of the light having the first spectrum, and an intensity of the light having the second spectrum, are then sensed. From the sensed intensities of the lights having the first and second spectrums, an intensity of light having a third spectrum is estimated.
Abstract:
Methods and apparatuses for backlight calibration are described. The apparatus 100 comprises a backlight unit 102 comprising a plurality of light sources 120, at least one photo-sensor 103 adapted to measure the light emitted by the backlight unit 102, a photo-sensor controller 112 coupled to the photo-sensor 103 for controlling the photo-sensor(s) 103, a backlight driving circuit 104 coupled to the light sources 120 for providing individual driving on each light source, a signal generator 114 coupled to the photo-sensor controller 112 and the backlight driving circuit 104 for controlling the operation timing of photo-sensors 103 and each of the light source 120 such that lighting conditions from each of the light source can be acquired, and a processing unit 111 coupled to the photo-sensor 103 and the backlight driving circuit 104 for analyzing the measurement data from the photo-sensors 103 and providing an adjustment signal to the backlight driving circuit 104 to achieve uniform lighting conditions of the backlight unit 102. Also described is a method comprising the steps of providing saved settings for backlight driver, providing a modified timing sequence to backlight driver and photo sensor 202, measuring light conditions of each individual light source or each individual group of light sources in backlight unit 203, comparing measurement data with predefined light conditions 205, calculating the adjustment required on backlight drivel to achieve desired light conditions, and saving calculated adjustment as new settings for backlight driver 207.
Abstract:
In one embodiment, light having a first spectrum is filtered from a mixed light. Light having a second spectrum, different from the first spectrum, is also filtered from the mixed light. An intensity of the light having the first spectrum, and an intensity of the light having the second spectrum, are then sensed. From the sensed intensities of the lights having the first and second spectrums, an intensity of light having a third spectrum is estimated.
Abstract:
A method for correcting color characteristics of a flat panel display comprises the steps of using a signal generating device to generate an input signal to the display and a color measurement instrument to measure color displayed by the display to obtain an output value; obtaining corrected color characteristic values necessary for the display to display a target output value Txyz through the relation of an inverse function RGB=f−1(XYZ) between the input signal RGB and output value XYZ, and storing the corrected color characteristic values and an identification code of the display into a storage medium. The corrected color characteristic values are downloaded to a hard disk of a computer from the storage medium according to the identification code; and the computer uses a driver of the display to activate the flat panel display to display a corrected color according to the corrected color characteristic values.
Abstract translation:用于校正平板显示器的颜色特性的方法包括以下步骤:使用信号产生装置来产生对显示器的输入信号;以及彩色测量仪器,用于测量由显示器显示的颜色以获得输出值; 通过输入信号RGB和输出值XYZ之间的反函数RGB = f -1(XYZ)的关系获得显示所需的校正颜色特性值以显示目标输出值Txyz,并存储 校正的颜色特性值和显示的识别码存储到存储介质中。 校正的颜色特征值根据识别码从存储介质下载到计算机的硬盘; 并且计算机使用显示器的驱动器来激活平板显示器以根据校正的颜色特征值显示校正的颜色。