Abstract:
A method and apparatus are disclosed for an analyzer which measures concentration of a liquid specimen by monitoring the coloration of test paper which is either dipped into the specimen or is otherwise painted with it. In the method, inner stray rays produced by a light source which do not reach the test paper are experimentally monitored, so that the effect of such inner stray rays upon the accuracy of the test paper analysis is eliminated. Additionally, a method of relating relative reflectivity of the test paper to the concentration of the specimen is disclosed, in which method the calibration curve is modeled as a section of a hyperbola. In the apparatus, a microcomputer performs the evaluation and the detection of the coloration of the test paper and the compensation for various sources of instrumental error takes place electronically.
Abstract:
A method for moisture testing of a fully assembled photovoltaic (PV) module. An assembled PV module is probed with short wave IR probe energy in the range of 1700-2000 nm. Energy reflected from the assembled PV module is collected and directed to a sensor. Noise is removed from a signal of the sensor with reference to the probe energy. Absorption is of the probe energy is determined. The absorption is correlated to moisture in the PV module. A preferred system that carries out the method provides a signal-to-noise ratio (as defined by standard deviation/mean of measured reflectance) of at least 3800.
Abstract:
A method and apparatus for detecting the presence of mycotoxins in cereals, the method including: capturing at least one diffuse-light absorption spectrum of a collection of cereal grains; capturing at least one diffuse-light absorption spectrum of at least one individual cereal grain from the collection of cereal grains; and classifying the level of mycotoxin contamination in at least one cereal grain by performing multivariate data analysis on the at least one diffuse-light absorption spectrum of the collection of cereal grains and the at least one diffuse-light absorption spectrum of the at least one individual cereal grain.
Abstract:
A spectrometric analysis system for use with a drilling and production system including a first inlet configured to receive an aliquot of downhole drilling fluid, a downhole mixing chamber in fluid communication with the first inlet and a reservoir configured to provide an aliquot of solvent, a second inlet configured to receive an aliquot of uphole drilling fluid, an uphole mixing chamber in fluid communication with the second inlet, a catalyst tape configured to be displaced in the downhole and uphole mixing chambers, an optical device configured to produce a chromophoric signal by contacting the catalyst tape with an electromagnetic signal, and a spectrometer for detecting the chromophoric signal produced by the optical device.
Abstract:
Disclosed is a high reflectivity integrating cavity and device to amplify and detect luminescent emissions produced by small concentrations of materials to be analyzed. Femto or nano molar concentrations of a material can be placed within the high reflectivity integrating cavity. At least the interior surface of the high reflectivity integrating cavity can comprise a coating that, at a designated wavelength of electromagnetic radiation, is transparent and non-absorbing to such designated wavelengths of electromagnetic radiation. In addition to the isotropic field induced by the interior surface of the high reflectivity integrating cavity, the high reflectivity of the interior surface of the high reflectivity integrating cavity leads to very large effective optical path lengths within the interior of the high reflectivity integrating cavity, thereby amplifying the luminescent emissions produced by the sample.
Abstract:
A system for disinfecting a fluid, including: a flow cell including one or more inlet ports and one or more outlet ports, wherein the flow cell is configured to communicate a fluid containing a biological contaminant from the one or more inlet ports to the one or more outlet portions through an interior portion thereof; and one or more point radiation sources disposed about the flow cell, wherein the one or more point radiation sources are operable for delivering radiation to the biological contaminant; wherein an interior surface of the flow cell is operable for reflecting the radiation delivered to the biological contaminant by the one or more point radiation sources; and wherein the interior surface of the flow cell is operable for reflecting the radiation delivered to the biological contaminant by the one or more point radiation sources such that a radiation intensity is uniform throughout the interior portion of the flow cell. In one exemplary embodiment, the flow cell is an integrating sphere. Optionally, the system also includes a photocatalyzing material disposed on at least a portion of the interior surface of the flow cell.
Abstract:
A system for disinfecting a fluid, including: a flow cell including one or more inlet ports and one or more outlet ports, wherein the flow cell is configured to communicate a fluid containing a biological contaminant from the one or more inlet ports to the one or more outlet portions through an interior portion thereof; and one or more point radiation sources disposed about the flow cell, wherein the one or more point radiation sources are operable for delivering radiation to the biological contaminant; wherein an interior surface of the flow cell is operable for reflecting the radiation delivered to the biological contaminant by the one or more point radiation sources; and wherein the interior surface of the flow cell is operable for reflecting the radiation delivered to the biological contaminant by the one or more point radiation sources such that a radiation intensity is uniform throughout the interior portion of the flow cell. In one exemplary embodiment, the flow cell is an integrating sphere. Optionally, the system also includes a photocatalyzing material disposed on at least a portion of the interior surface of the flow cell.
Abstract:
The invention relates to a light integrating cavity device, such as an integrating sphere, for measuring diffuse reflectance of a sample. A light trap is movable within a light scattering cavity of the device for controlling specular reflections during measurements. The light trap may be rotatable around the sample under test inside the cavity so that specular reflections off the sample can be included or excluded from the measurement. The sample may also be placed at the outside against a measurement port, and a measurement instrument is moveable on a rotating arm within or outside of the cavity.
Abstract:
Methods and apparatus for evaluating the quality of an environment or process by measuring light emitted from a bioluminescent sample containing ATP, ADP, or alkaline phosphatase. The apparatus comprises a sample collection and analysis system used to collect a sample, mix reagents, react the sample, and collect it in a measurement chamber. The system includes an instrument having a photon detection assembly for use with the sample testing device and one or more probe assemblies that optically cooperate with the instrument. The instrument includes a dark chamber with a reflective interior surface which may be concave or preferably spherical, and a photon detection sensor such as a multi-pixel photon counter sensor. A substantially transparent portion of the probe assembly, and liquid contained therein, focus bioluminescence toward the photon detection sensor.
Abstract:
A reflectance spectroscopy measuring and sampling system for gemstone testing is disclosed. The system includes a first light source (1), a second light source (2), a light filtering element, an integrating sphere (S), an optical fiber (9), a spectroscopic detection module (10), an analog-digital conversion module (11) and a data processing terminal (12), wherein the integrating sphere (S) is provided with an entrance port, a sampling opening (6) and a reflected light exit port (7). A reflectance spectroscopy measuring and sampling method for gemstone testing is also disclosed. The system and the method have an excellent performance and can be widely used in the gemstone identification.