Abstract:
A method and a system for illumination of a personal item, the system comprising at least one light source activated by a textile switch, the light source and the textile switch being secured to a textile substrate and connected by conductors on the textile substrate, the textile substrate being secured on the personal item. The method comprises securing at least one light source and a textile switch on a substrate, connecting the light source and the textile switch by conductors on the substrate, connecting the light source and the textile switch to a powering unit, securing the substrate to the personal item and operating the textile switch.
Abstract:
The various embodiments of the present invention provide a stress-relieving, second-level interconnect structure that is low-cost and accommodates TCE mismatch between low-TCE packages and PCBs. The various embodiments of the interconnect structure are reworkable and can be scaled to pitches from about 1 millimeter (mm) to about 150 micrometers (μm). The interconnect structure comprises a dielectric body element and at least one interconnection array that provides a conductive path between two electronic components. Each interconnection array comprises a plurality of wires that provide both conductivity and compliance to the overall interconnect structure. The versatility and scalability of the interconnect structure of the present invention make it a desirable structure to utilize in current two-dimensional and ever-evolving three-dimensional IC structures.
Abstract:
Electrical components are formed in a fabric during the weaving process by a series of crossing conductors in the warp and weft fibres of the fabric. Some of the crossing points provide permanent Separation of the crossing conductors, others permanent connection of the crossing conductors and others connection upon the application of pressure to the fabric. The structure provides the possibility of forming a greater range of components and more reliable component characteristics than heretofore possible.
Abstract:
There are provided a connection structure of printed circuit boards, and so forth, the connection structure including a first printed circuit board, a second printed circuit board located above the first printed circuit board, and an anisotropic conductive adhesive configured to establish a conductive connection between a conductor of the first printed circuit board and a conductor of the second printed circuit board, in which the anisotropic conductive adhesive contains a conductive filler, and in which the conductive filler is formed of crystallized metal-particle wires produced by allowing metal particles to crystallize and grow linearly. It is thus possible to easily achieve sufficiently high connection strength while a flying lead of one printed circuit board is electrically connected to a conductive lead (substrate pad) of the other printed circuit board.
Abstract:
The circuit board is capable of tightly bonding a cable layer on a base member even if thermal expansion coefficients of the base member and the cable layer are significantly different. The circuit board comprises: the base member; and the cable layer being laminated on the base member with anchor patterns, which are electrically conductive layers formed on a surface of the base member.
Abstract:
A porous metal foil of the present invention comprises a two-dimensional network structure composed of metal fibers. This porous metal foil has superior properties and can be obtained in a highly productive and cost effective manner.
Abstract:
The invention relates to a textile (1) for mounting a first electronic component at a first designated position (121) on the textile, and for mounting a second electronic component at a second designated position (122) on the textile, the textile comprising a first marker pattern (111, 112) associated with the first designated position, and a second marker pattern (113, 114) associated with the second designated position. With the textile according to the invention, an electronic textile can be reliably manufactured using conventional equipment known from the electronics assembly industry, such as a pick-and-place apparatus, whereby the electronic components are properly provided at their respective designated positions on the textile.
Abstract:
Key actuators and other switching devices are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The ratio of the weight of the conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers to the weight of the base resin host is between about 0.20 and 0.40. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like. The conductive loaded resin-based key actuators and other switching devices can be formed using methods such as injection molding compression molding or extrusion. The conductive loaded resin-based material used to form the key actuators and other switching devices can also be in the form of a thin flexible woven fabric that can readily be cut to the desired shape.
Abstract:
An aggregate structure of carbon fibers, organized by a plurality of carbon fibers, includes, an aggregate of the carbon fibers aligned in a lengthwise direction, in which a density of the carbon fibers at one side end is different from a density of the carbon fibers at the other side end.
Abstract:
A surface functional electro-textile fabric incorporates energy-active, electrically conductive or optically conductive fibers and nonconductive fibers in a woven or knitted textile fabric. The weave or knit pattern is selected so as to form floats of the electrically conductive fibers on at least one surface of the electro-textile fabric. The electro-textile fabric can be incorporated into an antenna structure that interacts with high frequency electromagnetic radiation, particularly in the frequency range of DC to 100 GHz.