Abstract:
An optical fibre for use in fibre lasers has the lasing additive eg Er.sup.3+, concentrated in center of the core. Preferably the core has an inner region which contains the additive and an outer region which is dopant free. The concentration of the dopant reduces the pump threshold for a laser and improves the gain performance for a given pump power. The fibre is conveniently made in MCVD. The use of Al.sub.2 O.sub.3 in the inner zone appears to reduce loss of dopant during tube collapse.
Abstract:
A method of incorporating an additive or dopant oxide in a glass body produced by the flame hydrolysis technique. Particles of the primary glass former are produced by flame hydrolysis and deposited to form a porous body which is impregnated, in part at least, with a dopant which may be dissolved or suspended in a vehicle. The body is then thermally consolidated with the dopant dispersed therein.
Abstract:
According to embodiments, an optical fiber may include a core portion comprising an outer radius rC and a maximum relative refractive index ΔCmax. A cladding may surround the core portion and include a low-index trench and an outer cladding. The low index trench may surround the core portion and includes an outer radius rT and relative refractive index ΔT. The outer cladding may surround and be in direct contact with the low-index trench. The outer cladding may be formed from silica-based glass comprising greater than 1.0 wt. % bromine and has a relative refractive index ΔOC, wherein Δcmas>ΔOC>ΔT. The optical fiber may have a cable cutoff of less than or equal to 1530 nm. An attenuation of the optical fiber may be less than or equal to 0.185 dB/km at a wavelength of 1550 nm.
Abstract:
Laser waveguides, methods and systems for forming a laser waveguide are provided. The waveguide includes an inner cladding layer surrounding a central axis and a glass core surrounding and located outside of the inner cladding layer. The glass core includes a laser-active material. The waveguide includes an outer cladding layer surrounding and located outside of the glass core. The inner cladding, outer cladding and/or core may surround a hollow central channel or bore and may be annular in shape.
Abstract:
The invention describes a method for the manufacture of quartz glass that comprises not only doping with rare earth elements and/or transition metals, but also fluorination of the quartz glass. The method described presently allows the diffusion of the dopants during fluorination to be prevented. Moreover, the invention relates to the quartz glass that can be obtained according to the method according to the invention and the use thereof as laser-active quartz glass, for generating light-guiding structures, and in optical applications.
Abstract:
The cladding absorption of single-mode, double-clad, gain-producing fibers is increased in fiber designs that includes a trench region disposed between the core and inner cladding regions. Increased cladding absorption is achieved while maintaining single-mode operation.
Abstract:
The present invention provides a process for fabrication of ytterbium (Yb) doped optical fiber through vapor phase doping technique. The method comprises deposition of Al2O3 and Yb2O3 in vapor phase simultaneously in combination with silica during formation of sintered core layer. This is followed by collapsing at a high temperature in stepwise manner to produce the preform and drawing of fibers of appropriate dimension. The process parameters have been optimized in such a way that Al and Yb-chelate compounds can be transported to the reaction zone without decomposition and condensation of precursor materials. Thus variations of dopants concentration along the length of the preform have been minimized to
Abstract:
The fiber comprises a core (2) having an index N and diameter of 10 μm or more, surrounded by a ring (4) having an index N+Δn and thickness ΔR, and cladding (6) surrounding the ring and comprising for example air gaps (8). According to the invention: Δn≧10−3 and ΔR=α/(Δn)β [1] where: 5×10−4 μm≦α≦5×10−2 μm and 0.5≦β≦1.5. The numbers α and β are dependent on the wavelength λ of the light guided by the fiber, the number of missing gaps therein, the diameter d of the gaps, the spacing Λ thereof and N. To design the fiber, λ, the number of missing gaps, d/Λ, the core doping content, Λ and Δn are chosen; and ΔR is determined using equation [1] so as to obtain a flattened fundamental mode.
Abstract:
One aspect relates to a method for the manufacture of doped quartz glass. Moreover, one aspect relates to quartz glass obtainable according to the method including providing a soot body, treating the soot body with a gas, heating an intermediate product and vitrifying an intermediate product.