Abstract:
An optical sensing module, including a frame, a light sensing element, and a diffusion element is provided. The light sensing element is disposed on the frame. The diffusion element is connected to the frame and is disposed above the light sensing element. In a first sensing mode, ambient light passes through the diffusion element before received by the light sensing element to make the optical sensing module to obtain light intensity of the ambient light. In a second sensing mode, the optical sensing module rotates around a first rotation axis to make the light sensing element face a display surface of the display device for receiving image light of the display surface so that the optical sensing module obtains brightness or chromaticity of the display device. A display device having this optical sensing module is also provided.
Abstract:
A light sensor includes a primary lens, and a light device spaced from the primary lens. A control structure is disposed between the primary lens and the light device. An actuator is coupled to the control device to move the control device relative to the primary lens and the light device to control the passage of light between the primary lens and the light device. The light sensor may include a light emitting sensor having an array of individual light emitters, or a light detecting sensor having a light detector. The control structure may include an array of secondary bi-telecentric lenses for use with the light emitting sensor, or a plate having an aperture extending therethrough for use with the light detecting sensor.
Abstract:
FCIS based-LEMCS designed in this invention accomplishes both of the above proficiencies of measuring the averaged pulse energy of the Pulsed Type Laser Source and calibrating the Commercial Laser Energy Meters, which are traceably to primary level standards, FCIS based-LEMCS contains an integrating sphere having a novel port and an interior design and a series of mechanical choppers having separate Duty Cycles, each of which is rotated by an electrical motor in FCIS based-LEMCS, used for generating a chopped type laser, called as Chopped Type Laser Source, in order to provide the reference and averaged pulse energy for traceable calibration of Commercial Laser Energy Meters.
Abstract:
A packaged optical device includes a light source device emitting light to an object surface, a sensor chip receiving reflective light reflected from the object surface, and a non-lens transparency layer located in front of the sensor chip. The light and the reflective light have a first main optic axis and a second main optic axis, respectively, and the first main optic axis and the second main optic axis are configured to form the specular reflection configuration, thereby enhancing images received by the sensor chip. The non-lens transparency layer has a zone passed through by the second main optic axis, and transmittance of the zone is lower than that of other zones of the non-lens transparency layer, thereby preventing the sensor chip from being saturated.
Abstract:
A radiance sensor includes a memory and a microprocessor. The memory stores non-transitory computer-readable instructions and adapted to store a plurality of electrical signals output from a photodetector array in response to electromagnetic radiation transmitted through a lenslet array and incident on the photodetector array. The microprocessor is adapted to execute the instructions to (i) determine irradiance of the electromagnetic radiation in a detector plane from the plurality of electrical signals, each electrical signal having generated by a respective one of a plurality of photodetectors of the photodetector array, and (ii) reconstruct, from the determined irradiance, the 4D-radiance in an input plane, the lenslet array being between the input plane and the detector plane.
Abstract:
An aquarium photometer system includes a housing unit, an arm, and a mirror. The housing unit includes a light sensor configured to sense light incident on the light sensor and to convert the incident light to a signal. The housing unit also includes an operational amplifier including a first input node, a second input node, and an output node. The operational amplifier is configured to: receive the signal at the first input node, amplify a difference between the signal at the first input node and a signal at the second input node by a gain factor, and output the amplified signal on the output node. The housing unit also includes a potentiometer connected to the operational amplifier and configured to regulate the amplified signal; and a display connected to the potentiometer and configured to show an intensity of light detected by the light sensor based on the regulated amplified signal. The arm at a first end is connected to the housing unit and configured to move the housing unit around an aquarium case. The mirror is located on a bar and positioned within the aquarium in front of the light sensor and at a focal distance from the light sensor and configured to increase an amount of light incident on the light sensor.
Abstract:
A beam delivery system may include: beam adjusters configured to adjust a divergence angle of a pulse laser beam; a beam sampler configured to separate a part of the pulse laser beam outputted from a first beam adjuster provided at the most downstream among the beam adjusters to acquire a sample beam; a beam monitor configured to receive the sample beam and output a monitored diameter; and a beam delivery controller configured to control the beam adjusters based on the monitored diameter. The beam delivery controller may adjust each of beam adjusters other than the first beam adjuster selected one after another from the most upstream so that the monitored diameter at the beam monitor becomes a predetermined value specific to the beam adjuster, and adjust the first beam adjuster so that the pulse laser beam becomes focused at a position downstream of a target position.