NON-IMMERSIVE METHOD AND APPARATUS FOR QUANTITATIVE ANALYSIS OF LIQUID METALS AND ALLOYS

    公开(公告)号:US20220236247A1

    公开(公告)日:2022-07-28

    申请号:US17615572

    申请日:2019-05-31

    Applicant: DTE EHF.

    Abstract: A non-contact, non-immersive method and apparatus are provided for accurately measuring quantitatively one or more elements in liquid metal or alloy samples using laser-induced breakdown spectroscopy (LIBS). The method is particularly useful for process and/or quality control within the metallurgy industry for accurately and very quickly measuring minor component or impurity elements in liquid metal in the production process, without touching the liquid metal and without the need for cooling and solidifying samples for analysis. In the method and apparatus a pre-determined distance is dynamically maintained between emission receiving optics and the surface of a liquid sample being analysed and the instrument does not come in contact with the liquid metal surface. Liquid samples are heated and/or maintained at a desired temperature. For many elements, values for limit-of-detection, measurement repeatability and accuracy about or below 1 ppm are achieved using this method.

    Controlling Light Exposure of Light Sensitive Object

    公开(公告)号:US20220159912A1

    公开(公告)日:2022-05-26

    申请号:US17669744

    申请日:2022-02-11

    Abstract: An approach for controlling light exposure of a light sensitive object is described. Aspects of this approach involve using a first set of radiation sources to irradiate the object with visible radiation and infrared radiation. A second set of radiation sources spot irradiate the object in a set of locations with a target ultraviolet radiation having a range of wavelengths. Radiation sensors detect radiation reflected from the object and environment condition sensors detect conditions of the environment in which the object is located during irradiation. A controller controls irradiation of the light sensitive object by the first and second set of radiation sources according to predetermined optimal irradiation settings specified for various environmental conditions. In addition, the controller adjusts irradiation settings of the first and second set of radiation sources as a function of measurements obtained by the various sensors.

    System and method to minimize nonrandom fixed pattern noise in spectrometers

    公开(公告)号:US11313720B2

    公开(公告)日:2022-04-26

    申请号:US15003891

    申请日:2016-01-22

    Abstract: This invention relates to a system and method to improve the signal to noise ratio (SNR) of optical spectrometers that are limited by nonrandom or fixed pattern noise. A signal from a sample is collected using a short test exposure, a total observation time to maximize SNR is calculated, and the total observation time is achieved by averaging multiple exposures whose time is selected based on the time dependent noise structure of the detector. Moreover, with a priori knowledge of the time dependent noise structure of the spectrometer, this method is easily automatable and can maximize SNR for a spectrum of an unknown compound without any user input.

    Controlled separation of laser ablation sample gas for direction to multiple analytic detectors

    公开(公告)号:US11275029B2

    公开(公告)日:2022-03-15

    申请号:US16706197

    申请日:2019-12-06

    Abstract: A laser-ablation-based analytical system can include a sample chamber input, a make-up gas input, a vacuum pump, and an output flow. The sample chamber input can be configured to deliver a sample chamber gas flow comprised of combination of a laser-ablated sample and a sample-carrier gas from a sample chamber. The make-up gas input can be configured to provide an amount of make-up gas to supplement the combination of the laser-ablated sample and the sample-carrier gas. The vacuum pump can be fluidly connected to the sample chamber input and the make-up gas input, the vacuum pump configured to create a negative pressure in a sample transport gas downstream of the vacuum pump, the sample transport gas including the make-up gas, the laser-ablated sample, and the sample-carrier gas. The output flow can be configured to deliver the sample transport gas from the vacuum pump to a detection device.

    Spark emission spectrometer with separable spark chamber

    公开(公告)号:US11274968B2

    公开(公告)日:2022-03-15

    申请号:US17048081

    申请日:2019-05-02

    Abstract: The invention relates to an optical emission spectrometer with a spark chamber (10) which comprises a spark stand opening (14) and an oblong electrode (11) being arranged inside thereof for generating a spark and a beam of light originating therefrom. Furthermore, a coupling unit (20) is provided which comprises at least one window being arranged on a window holder and a channel. The spark chamber (10) and the coupling unit (20) are arranged with respect to each other such that the beam of light falls through the window (30) into the channel (21). In addition, the spark chamber (10) and the coupling unit (20) comprise means for purging with an inert gas.
    The spark chamber (10) is directly connected with a window holder (31) and via the window holder (31) with the coupling unit (20), wherein between spark chamber (10) and window holder (31) a sealing element (33) is provided. The coupling unit (20) comprises at least one elastic means which is arranged such that it presses the window holder (31) against the spark chamber (10).

    GLOW PLASMA GAS MEASUREMENT SIGNAL PROCESSING

    公开(公告)号:US20210310956A1

    公开(公告)日:2021-10-07

    申请号:US17223941

    申请日:2021-04-06

    Abstract: Provided are methods, apparatuses and systems for enhanced determination of the gas composition of a sample gas using glow discharge optical emission spectroscopy (GD-OES) for gas analysis. A first method comprises: generating one or more oscillating electromagnetic fields within a plasma cell to excite particles within the cell, to produce a glow discharge plasma in the plasma cell, and controlling the operating conditions for the plasma cell while flowing a gas mixture through the plasma cell to maintain glow discharge optical emissions from the plasma within a desired operating range; and monitoring one or more glow discharge optical emissions from the plasma in the plasma cell; wherein said monitoring of the optical emissions comprises measuring the optical emissions, or measuring a signal that correlates with the optical emissions, at twice the plasma excitation frequency; and processing the signal during each excitation cycle of the electromagnetic excitation, to determine the concentration of a gas within a gas mixture flowing through the plasma cell.

Patent Agency Ranking