Abstract:
A semiconductor device includes a base substrate made of silicon, a cap substrate and a leading electrode having a metal part. The base substrate has base semiconductor regions being insulated and separated from each other at a predetermined portion of a surface layer thereof. The cap substrate is bonded to the predetermined portion of the surface layer of the base substrate. The leading electrode has a first end connected to one of the plurality of base semiconductor regions of the base substrate Wand extends through the cap substrate such that a second end of the leading electrode is located adjacent to a surface of the cap substrate for allowing an electrical connection with an external part, the surface being opposite to a bonding surface at which the base substrate and the cap substrate are bonded. The leading electrode defines a groove between an outer surface thereof and the cap substrate.
Abstract:
A micromechanical structure, in particular a sensor arrangement, includes at least one micromechanical functional layer, a CMOS substrate region arranged below the at least one micromechanical functional layer, and an arrangement of one or more contact elements. The CMOS substrate region has at least one configurable circuit arrangement. The arrangement of one or more contact elements is arranged between the at least one micromechanical functional layer and the CMOS substrate region and is electrically connected to the micromechanical functional layer and the circuit arrangement. The configurable circuit arrangement is designed in such a way that the one or more contact elements are configured to be selectively connected to electrical connection lines in the CMOS substrate region.
Abstract:
A MEMS or NEMS device for detecting a force following a given direction, comprising a support and at least one seismic mass capable of moving under the effect of the force to be measured in the direction of the force, and a detector for detecting the movement of the seismic mass, the seismic mass being articulated relative to the support by at least one pivot link, and an actuator capable of varying the distance between the axis of the pivot link and the center of gravity of the exertion of the force on the seismic mass.
Abstract:
In a teeter-totter type MEMS accelerometer, the teeter-totter proof mass and the bottom set of electrodes (i.e., underlying the proof mass) are formed on a device wafer, while the top set of electrodes (i.e., overlying the teeter-totter proof mass) are formed on a circuit wafer that is bonded to the device wafer such that the top set of electrodes overlie the teeter-totter proof mass. The electrodes formed on the circuit wafer may be formed from an upper metallization layer on the circuit wafer, which also may be used to form various electrical connections and/or bond pads.
Abstract:
A method of bonding a semiconductor substrate has a step of pressurizing and heating to bond a substrate 11 with a substrate 12 by eutectic bonding in a state that an aluminum containing layer 31 and a germanium layer 32 between a bonding section 30a of the substrate 11 and a bonding section 30b of the substrate 21 are overlaid and an outer end 32a of the germanium layer 32 is receded inward with respect to an outer end 31a of the aluminum containing layer 31.
Abstract:
A package for electronic component comprises a rectangular package body having a flat cut surface to be abutted on a flat mounting surface of a mounting substrate, a first side surface intersecting with the flat cut surface, and a first notch part formed at a boundary between the flat cut surface and the first side surface, an electronic component installed in the package body, and a first pad electrically connected to the electronic component and formed on an inner wall surface of the first notch part.
Abstract:
A method and device having chip scale MEMS packaging is described. A first substrate includes a MEMS device and a second substrate includes an integrated circuit. The frontside of the first substrate is bonded to the backside of the second substrate. Thus, the second substrate provides a cavity to encase, protect or operate the MEMS device within. The bond may provide an electrical connection between the first and second substrate. In an embodiment, a through silicon via is used to carry the signals from the first substrate to an I/O connection on the frontside of the second substrate.
Abstract:
A MEMS sensing system includes a movable mass having at least one contact surface, a stopper system for stopping the movement of the mass, the stopper system having at least one contact surface that contacts a corresponding contact surface of the mass if a sufficient movement of the mass occurs in a direction, at least one stopper gap formed between the at least one contact surface of the stopper system and the corresponding contact surface of the mass, and a spring system in communication with the at least one stopper gap.
Abstract:
A method for manufacturing a component having a through-connection. The method includes providing a semiconductor substrate, forming a recess in the semiconductor substrate, and introducing into the recess a pourable starting material which has a metal. The method furthermore includes carrying out a heating process, an electrically conductive structure forming the through-connection being developed from the pourable starting material.
Abstract:
The disclosure generally relates to method and apparatus for forming three-dimensional MEMS. More specifically, the disclosure relates to a method of controlling out-of-plane buckling in microstructural devices so as to create micro-structures with out-of-plane dimensions which are 1×, 5×, 10×, 100× or 500× the film's thickness or above the surface of the wafer. An exemplary device formed according to the disclosed principles, includes a three dimensional accelerometer having microbridges extending both above and below the wafer surface.