Abstract:
Methods, apparatuses and devices are described where a main wafer is irreversibly bonded to a carrier wafer and thinned to reduce a thickness of the main wafer, for example down to a thickness of 300 μm or below.
Abstract:
A method for manufacturing a MEMS device is disclosed. Moreover a MEMS device and a module including a MEMS device are disclosed. An embodiment includes a method for manufacturing MEMS devices includes forming a MEMS stack on a first main surface of a substrate, forming a polymer layer on a second main surface of the substrate and forming a first opening in the polymer layer and the substrate such that the first opening abuts the MEMS stack.
Abstract:
A method and system for preparing a semiconductor wafer are disclosed. In a first aspect, the method comprises providing a passivation layer over a patterned top metal on the semiconductor wafer, etching the passivation layer to open a bond pad in the semiconductor wafer using a first mask, depositing a protection layer on the semiconductor wafer, patterning the protective layer using a second mask, and etching the passivation layer to open other electrodes in the semiconductor wafer using a third mask. The system comprises a MEMS device that further comprises a first substrate and a second substrate bonded to the first substrate, wherein the second substrate is prepared by the aforementioned steps of the method.
Abstract:
For producing a structured coating, or for carefully lifting off a coating over a sensitive region, it is proposed that a release film be applied and structured under the coating in the region which is not to be coated. In a release step, the release film is reduced in the adhesion in the region which is not to be coated and is subsequently lifted off together with the coating applied over it.
Abstract:
Methods, apparatuses and devices are described where a main wafer is irreversibly bonded to a carrier wafer and thinned to reduce a thickness of the main wafer, for example down to a thickness of 300 μm or below.
Abstract:
Disclosed are an apparatus for harvesting/storing piezoelectric energy, including: a substrate having a groove at a side thereon; a piezoelectric MEMS cantilever having an end fixed to the substrate and the other end floating above the groove, and configured to convert and store an external vibration into electric energy; and a mass formed at one end of the piezoelectric MEMS cantilever and configured to apply a vibration, and a manufacturing method thereof.
Abstract:
Methods, apparatuses and devices are described where a main wafer is irreversibly bonded to a carrier wafer and thinned to reduce a thickness of the main wafer, for example down to a thickness of 300 μm or below.
Abstract:
An embodiment of the present invention relates to a chip package and fabrication method thereof, which includes a chip protection layer or an additional etching stop layer to cover conducting pads to prevent dicing residue from damaging or scratching the conducting pads. According to another embodiment, a chip protection layer, an additional etching stop layer formed thereon, or a metal etching stop layer level with conducting pads or combinations thereof may be used when etching an intermetal dielectric layer at a structural etching region and a silicon substrate to form an opening for subsequent semiconductor manufacturing processes.
Abstract:
According to one embodiment, an electronic device includes a substrate, a first electrode provided stationary above the substrate and used for a variable capacitor, a second electrode provided movable above or below the first electrode and used for the variable capacitor, a first protective insulation film provided on a first surface of the first electrode, the first surface facing the second electrode, and a second protective insulation film provided on a second surface of the second electrode, the second surface facing the first electrode.
Abstract:
A method for fabricating an integrated MEMS-CMOS device. The method can include providing a substrate member having a surface region and forming a CMOS IC layer having at least one CMOS device overlying the surface region. A bottom isolation layer can be formed overlying the CMOS IC layer and a shielding layer and a top isolation layer can be formed overlying a portion of bottom isolation layer. The bottom isolation layer can include an isolation region between the top isolation layer and the shielding layer. A MEMS layer overlying the top isolation layer, the shielding layer, and the bottom isolation layer, and can be etched to form at least one MEMS structure having at least one movable structure and at least one anchored structure.