Abstract:
Polymeric films, which may be adhesive films, and display devices including such polymeric films, wherein a polymeric film includes: a first polymeric layer having two major surfaces, wherein the first polymeric layer includes a first polymeric matrix and particles. The first polymeric layer includes: a first polymeric matrix having a refractive index n1; and particles having a refractive index n2 uniformly dispersed within the first polymeric matrix; wherein the particles are present in an amount of less than 30 vol-%, based on the volume of the first polymeric layer, and have a particle size range of 400 nanometers (nm) to 3000 nm; and wherein n1 is different than n2.
Abstract:
A double-sided adhesive tape having a first outer impact-adhesive side and a second outer side that can be heat activated, comprising an at least two-layer product structure comprising the layers A and B. Layer A is an impact-adhesive layer chemically cross-linked by means of thermal initiation or an impact-adhesive carrier layer chemically cross-linked by means of thermal initiation. Layer B is a layer on the basis of a thermoplastic plastic. Layer A and layer B are in direct contact with each other, and the surface of layer B that is in direct contact with layer A has been corona- or plasma-pretreated. The double-sided adhesive tape is characterized in that the corona or plasma pretreatment is performed in an atmosphere comprising nitrogen, carbon dioxide, or a noble gas or a mixture of at least two of said gases.
Abstract:
The present invention relates to a double-sided tape, an electronic device including the same, and a method of preparing the double-sided tape. According to one aspect, the present invention provides a double-sided tape that contains, in order, a first adhesive layer, one or more film carrier layers, and a second adhesive layer, and a core adhesive layer between the first adhesive layer and the second adhesive layer.
Abstract:
The present disclosure relates to a light bar adhesive tape for a backlight source, including: a transparent bonding material layer configured to be bonded to a surface of a light bar flexible circuit board; a black and white flexible coating layer having a black surface on one side and a white surface on the other side, the white surface of the black and white flexible coating layer being bonded with the transparent bonding material layer; and a black and white bonding material layer having a black surface on one side and a white surface on the other side, the black surface of the black and white bonding material layer being bonded with the black surface of the black and white flexible coating layer. The present disclosure also relates to a backlight module including the light bar adhesive tape as above described and a display device including the backlight module.
Abstract:
A transparent protective layer and an electronic device including a transparent protective layer are provided. The transparent protective layer includes a first transparent plate having a first surface facing in a first direction and a second surface facing in a second direction opposite to the first direction; and an adhesive layer disposed on the second surface of the first transparent plate. The adhesive layer includes a first adhesive layer having a first adhesive force, and a second adhesive layer having a second adhesive force, which is less than the first adhesive force.
Abstract:
Provided is a conductive adhesive tape comprising: a substrate that is formed in a nano-web form having a number of pores by spinning a polymer material by a spinning method; and a conductive adhesive layer that is formed in a non-porous form by directly spinning a conductive adhesive material by a spinning method on one or both surfaces of the substrate, or that is laminated on one or both surfaces of the substrate. Accordingly, thickness of the adhesive tape can be made thin, adhesive strength of the adhesive tape can be enhanced, and the adhesive tape can be precisely attached on even a curved surface. Further, when removing the adhesive tape from components, the adhesive layer can be prevented from remaining on the surface of the components.
Abstract:
Arrangements related to carbon flocked tape are described. The flocked tape can include a first adhesive, a substrate, a second adhesive, and a plurality of fibers. The substrate can be formed from any suitable metal, polymer, and/or natural material. The fibers can be formed from milled recycled carbon fibers. The carbon fibers can be connected within the tape via an electrostatic flocking process. The flocked tape can allow for application, removal, and re-application. The carbon flocked tape can provide several benefits, such as electric and/or thermal conductivity, noise and vibration reduction, insulation and shielding, and altered fluid dynamics.
Abstract:
A repositionable merchandising display strip is provided. The display comprises a thin, flat body and a layer of adhesive on the front and back surfaces of the body. The front removable adhesive layer releasably holds products and the back removable adhesive layer is formulated so that the display can be removably adhered to a surface such as glass, wood, metal or other materials commonly found in retail stores. The display may further comprise a peel-away front layer releasably attached to the front removable adhesive layer and a peel-away back layer releasably attached to the back removable adhesive layer.
Abstract:
A temporary adhesive material for a wafer includes a first temporary adhesive layer of a silicone-containing polymer layer containing a photo base generator and a second temporary adhesive layer of a silicone-containing polymer layer which is laminated on the first temporary adhesive layer, does not contain the photo base generator, and is different from the polymer layer. Thereby, there can be formed a temporary adhesive layer having high thickness uniformity, even on a wafer having a step. Because of the thickness uniformity, a thin wafer having a uniform thickness of 50 μm or less can be easily obtained. When a thin wafer is produced and then delaminated from a support, the wafer can be delaminated from the support by exposure at a low exposure dose without stress. Therefore, a brittle thin wafer can be easily handled without causing damage, and a thin wafer can be easily produced.
Abstract:
A method of separating two substrates bonded with a redetachable, at least single-sidedly pressure-sensitive adhesive strip composed at least of a) a core layer which has a breaking extension of at least 300%, b) an outer carrier layer which has a breaking extension of not more than 120% and which at least sectionally is connected to the core layer such that it separates from the core layer when the latter is extensionally stretched, and c) a first adhesive layer which is applied at least sectionally to the side of the outer carrier layer that is opposite the side connected to the core layer, in which the core layer is stretched in the direction of the bond plane, starting from a region which has been made nonadhesive, until the core layer releases from at least one of the outer carrier layers so that the two substrates are separated from one another.