Abstract:
An in-line polarization extinction ratio (PER) monitor that generates a value of an optical signal's PER from a single measurement, without requiring the optical transmission signal path of the system to be directly coupled into a separate measurement device. The polarization extinction ratio may be defined as: 10 log(PEx/PEy), where PEx is the power of the optical signal propagating along the “x axis” and PEy is the power propagating along the orthogonal “y axis” (with the z-axis defined as a longitudinal optical axis of the system and the x-y plane orthogonal to this direction of propagation). The PER monitor comprises a section of optical fiber (preferably birefringent or with induced birefringency), with a pair of gratings formed along the fiber and oriented to out-couple orthogonal components of the propagating signal. Photodetectors are used to convert the scattered light into electrical signal equivalents and then processed to yield the PER value. By properly aligning the axes of the monitor and the optical system, the two measurements are sufficient to provide a one-shot, real-time calculation of the PER of the optical signal propagating through the system.
Abstract:
A system for measuring the rotation angle of optical active substances has a light source, a polarization generation unit; a polarization analyzing unit; a signal generating unit, respectively and electrically coupled to the polarization generation unit and the polarization analyzing unit; a signal processing unit, electrically coupled to the electric signal generating unit; wherein the light source is enabled to emit a beam toward the polarization generation unit for enabling the beam to be polarized into an incident polarized beam while being projected and traveled in an optical path passing through an optical active substance so as to be converted into a emerging beam; and the polarization analyzing unit is positioned to receive and analyze the emerging beam so as to generate a signal to be received and processed by the signal processing unit.
Abstract:
This invention relates to the manufacture of semiconductor substrates such as wafers and to a method for monitoring the state of polarization incident on a photomask in projection printing using a specially designed polarization monitoring reticle for high numerical aperture lithographic scanners. The reticle measures 25 locations across the slit and is designed for numerical apertures above 0.85. The monitors provide a large polarization dependent signal which is more sensitive to polarization. A double exposure method is also provided using two reticles where the first reticle contains the polarization monitors, clear field reference regions and low dose alignment marks. The second reticle contains the standard alignment marks and labels. For a single exposure method, a tri-PSF low dose alignment mark is used. The reticles also provide for electromagnetic bias wherein each edge is biased depending on that edge's etch depth.
Abstract:
The present invention relates to ellipsometer and polarimeter systems, and more particularly is an ellipsometer or polarimeter or the like system which operates in a frequency range between 300 GHz or lower and extending to higher than at least 1 Tera-hertz (THz), and preferably through the Infra-red (IR) range up to, and higher than 100 THz, including: a source such as a backward wave oscillator; a Smith-Purcell cell; a free electron laser, or an FTIR source and a solid state device; and a detector such as a Golay cell; a bolometer or a solid state detector; and preferably including a polarization state generator comprising: an odd bounce image rotating system and a polarizer, or two polarizers; and optionally including least one compensator and/or modulator, in addition to an analyzer.
Abstract:
A polarimeter based on coherent detection and a method for measuring the optical rotation of a polarized light beam by an optically active substance, while enabling the subtraction of background signals, are provided.
Abstract:
A micropolarimeter is described for simultaneously extracting all Stokes parameters from incident light. The micropolarimeter includes at least one superpixel, which further includes three or more subpixels, each exact a different polarization components from the incident light. The micropolarimeter includes a first and second alignment layers and a liquid crystal layer disposed between the first and second alignment layers. The liquid crystal molecules of the liquid crystal layer are aligned in accordance with the first and second alignment layers to form the superpixel. A method is provided for manufacturing the photo-aligned liquid-crystal micropolarimeter array.
Abstract:
A terahertz ellipsometer, the basic preferred embodiment being a sequential system having a backward wave oscillator (BWO); a first rotatable polarizer that includes a wire grid (WGP1); a rotating polarizer that includes a wire grid (RWGP); a stage (STG) for supporting a sample (S); a rotating retarder (RRET) comprising first (RP), second (RM1), third (RM2) and fourth (RM3) elements; a second rotatable polarizer that includes a wire grid (WGP2); and a Golay cell detector (DET).
Abstract:
A polarimetric sensor includes a substrate and a plurality of aligned nanotube film patches arranged on the substrate. Each of the plurality of aligned nanotube film patches is oriented on the substrate to sense a different orientational component of electromagnetic radiation. For each of the plurality of aligned nanotube film patches, at least two contacts are arranged in electrical communication with the respective aligned nanotube film patch. The at least two electrodes are configured to conduct to an external circuit an electric signal generated in the respective aligned nanotube film patch when exposed to a respective orientational component of electromagnetic radiation.
Abstract:
This invention revealed and demonstrated a method of measuring and deriving a Jones Matrix of a fiber or fiber component, and to compensate the fiber or fiber component such that the fiber or fiber component plus the compensated optical circuit act as if an Unitary Matrix free space condition. In this way, all compensated fibers or fiber components act the same no matter what their original conditions are. It greatly enhances the fiber or fiber component repeatability and stability throughout the fiber or fiber component production line. The compensated circuit for Unitary Matrix can be applied externally or internally.For the external approach, for example, compensators such as variable retarder and half-wave plate may be added, or equivalently polarization controllers may be employed. For the internal approach, no component is added, and the compensation is realized through fiber bending, twisting or other means at either or both ends of a fiber or fiber component.The disclosed free space single-mode fiber invention not only greatly enhances repeatability in the fiber and fiber component production line, it also can be employed to accelerate the design simulation for optical circuit optimization of optical fiber sensors employed fiber and fiber coil such as fiber optic gyros.
Abstract:
An apparatus and system for use in determining location of a celestial body are presented. The apparatus comprises: a polarizer comprising an array of polarized light filter cells and a light sensor array. The array of polarized light filter cells comprises at least a first polarization direction and a second polarization direction different from said first polarization direction. And the polarizer thereby produces polarized light of at least first and second different polarizations. The light sensor array is configured to receive the polarized light from the polarizer and produce data indicative of a pattern of at least one of light polarization intensity and direction. The pattern is indicative of at least one of azimuth and elevation of the celestial body to be located.