Abstract:
The present invention is directed to a particle beam processing apparatus that is smaller in size and operates at a higher efficiency. The processing apparatus includes a particle beam generating assembly, a foil support assembly, and a processing assembly. In the particle beam generating assembly, a cloud of particles, for example, electrons, are generated by heating at least one tungsten filament. The electrons are then extracted to travel at a high speed to the foil support assembly which is set at a much lower voltage than the particle beam generating assembly. A substrate is fed to the processing apparatus through the processing zone and is exposed to the electrons exiting the particle beam generating assembly and entering the processing zone. The electrons penetrate and cure the substrate causing a chemical reaction, such as polymerization, cross-linking, or sterilization.
Abstract:
A microminiature microwave electron source excited by a pulsed microwave power through a coaxial to emit electrons includes an electrically conductive chamber that is connected to an external conductor of the coaxial cable at an openings end thereof and has an opening anode in a bottom portion thereof, a central conductor adjacent to the electron source, the central conductor having one end thereof connected to a central conductor of the coaxial cable, a carbon nanotube cold cathode formed on the other end thereof being supported by the chamber such that the cold cathode opposes the anode, a coupling iris that airtightly and fixedly supports the central conductor at an opening end of the chamber, and a connecting device for electrically and mechanically connecting the opening end of the chamber to the central conductor of the coaxial cable so as to connect the central of the electron source to the central conductor of the coaxial cable.
Abstract:
The present invention is directed to a particle beam processing apparatus that is smaller in size and operates at a higher efficiency, and also directed to an application of such apparatus to treat a coating on a substrate of a treatable material, such as for flexible packaging. The processing apparatus includes a particle beam generating assembly, a foil support assembly, and a processing assembly. In the particle beam generating assembly, electrons are generated and accelerated to pass through the foil support assembly. In the flexible packaging application, the substrate is fed to the processing apparatus operating at a low voltage, such as 110 kVolts or below, and is exposed to the accelerated electrons to treat the coating on the substrate.
Abstract:
Apparatus and a method for treating polymeric material, such as polytetrafluoroethylene, with radiation. The polytetrafluoroethylene is moved under an electron beam in an even and consistent depth on an adapted vibratory table. The vibratory table is sealably covered which allows a controlled environment. The polymeric material can be degraded to lower molecular weight forms or reacted with other materials.
Abstract:
The present invention is directed to a particle beam processing apparatus that is smaller in size and operates at a higher efficiency. The processing apparatus includes a particle beam generating assembly, a foil support assembly, and a processing assembly. In the particle beam generating assembly, a cloud of particles, for example, electrons, are generated by heating at least one tungsten filament. The electrons are then extracted to travel at a high speed to the foil support assembly which is set at a much lower voltage than the particle beam generating assembly. A substrate is fed to the processing apparatus through the processing zone and is exposed to the electrons exiting the particle beam generating assembly and entering the processing zone. The electrons penetrate and cure the substrate causing a chemical reaction, such as polymerization, cross-linking, or sterilization.
Abstract:
The invention is a transportable and reconfigurable system and method designed for on-site conversion of toxic substances to nontoxic forms. The invention includes an electron beam generator, a reaction chamber and effluent post-processing modules mounted on a carrier for transporting the system from site to site.
Abstract:
A scanning system (25) for controlling a scanning servo (28,30) includes a scanning signal generator (50) which generates (51) a series of square wave scan signals, a pulse signal generator which generates (52) a pattern of pulses having short durations relative to the scan signal from the first generator, the generators being synchronized, and the scan signals and pulses then being separately applied to the scanner servo (30) to control it such that the resulting scanning behavior of the servo corresponds to the scan signals modified by the pattern of pulses.
Abstract:
An electron beam source or generator is described for the treatment of toxic materials in a treatment system in which electron beams are reacted with a flowing influent in a reaction chamber. The system is modular allowing different configurations as demanded by the site and by the clean-up job. It is also portable in that it can be easily moved from place to place. If mounted on a movable base it can be taken from place to place for use.
Abstract:
A novel parallel-filament type electron gun for electron beam irradiation accelerators or generators and the like having a plurality of longitudinally extending parallel transversely spaced substantially co-planar similar filaments for generating electrons and disposed between a lower co-extensive extractor grid and an upper co-extensive electrostatic lens surface for shaping the electron beam profile, and with constructional features that enable variable width and extremely wide guns to be achieved and with improved beam uniformity.
Abstract:
An ion plasma electron gun for the generation of large area electron beams with uniform electron distribution. Positive ions generated by a wire in a plasma discharge chamber are accelerated through an extraction grid into a second chamber containing a high voltage cold cathode. These positive ions bombard a surface of the cathode causing the cathode to emit secondary electrons which form an electron beam. After passing through the extraction grid and the plasma discharge chamber, the electron beam exits from the gun by way of a second grid and a foil window supported on the second grid. The gun is constructed so that the electron beam passing through the foil window has a relatively large area and a uniform electron distribution which is substantially the same as the ion distribution of the ion beam impinging upon the cathode. Control of the generated electron beam is achieved by applying a control voltage between the wire and the grounded housing of the plasma chamber to control the density of positive ions bombarding the cathode.