Abstract:
Through holes 36 are formed to penetrate a core substrate 30 and lower interlayer resin insulating layers 50, and via holes 66 are formed right on the through holes 36, respectively. Due to this, the through holes 36 and the via holes 66 are arranged linearly, thereby making it possible to shorten wiring length and to accelerate signal transmission speed. Also, since the through holes 36 and the via holes 66 to be connected to solder bumps 76 (conductive connection pins 78), respectively, are directly connected to one another, excellent reliability in connection is ensured.
Abstract:
The present invention comprises methods and compositions of dielectric materials. The dielectric materials of the present invention comprise materials having a dielectric constant of more than 1.0 and less than 1.9 and/or a dissipation factor of less than 0.0009. Other characteristics include the ability to withstand a wide range of temperatures, from both high temperatures of approximately +260° C. to low temperatures of approximately −200° C., operate in wide range of atmospheric conditions and pressures (e.g., a high atmosphere, low vacuum condition such as that found in the outer-space as well as conditions similar to those found at sea level or below sea level). The dielectric materials of the present invention may be used in the manufacture of composite structures that can be used alone or in combination with other materials, and can be used in electronic components or devices such as RF interconnects.
Abstract:
A printed wiring board is formed by adhering a coverlay film having a resistance layer formed on a surface of the coverlay film body to a printed wiring board body having a conductive layer formed on a surface of a substrate through an adhesive layer. The resistance layer is separated from and opposed to the conductive layer through the adhesive layer.
Abstract:
A backlight unit of the invention is reduced in thickness, weight and manufacturing costs but improved in heat releasing efficiency. In the backlight unit, a flexible printed circuit board has at least one through hole perforated therein. An LED package is disposed on a top portion of the flexible printed circuit board corresponding to the through hole. The backlight unit of the invention employs the flexible printed circuit board in place of a metal printed circuit board as a means to conduct current to the LED package. This produces a slimmer and lighter backlight unit and also saves manufacturing costs. In addition, the LED package is directly bonded onto a bottom plate by a heat conducting adhesive, thereby ensuring heat generated from the LED package to be released more quickly.
Abstract:
The present invention provides a hybrid optical/electrical circuit board in which an optical waveguide prepared by an exposing and developing step is combined with an electric circuit, wherein a printed wiring board containing an inorganic filler and a light absorber is used, and it has an optical waveguide core pattern having a high resolution and makes it possible to raise a density of optical wiring.
Abstract:
A photosensitive material for forming a conductive film having a support, a silver salt-containing emulsion layer over the support, and one or more optional layers formed over the support or the silver salt-containing emulsion layer side of the support, wherein any one of the silver salt-containing emulsion layer or the optional layer(s) contains conductive fine particles and a binder, and the ratio by mass of the conductive fine particles to the binder (the conductive fine particles/the binder) is from 1/33 to 1.5/1.
Abstract:
A halogen-free varnish includes (A) resin, (B) curing agent, (C) flame inhibitor (flame-retarding agent), (D) accelerator and (E) additives. Resin of (A) has novolac epoxy resin, DOPO-CNE and DOPO-HQ-CNE. Curing agent of (B) includes Benzoxazine resin and phenol novolac resin. Glass fabric cloth is dipped into the halogen-free varnish so as to form a prepreg with better thermal stability, anti-flammability, low absorbent ability and higher curing rate. Furthermore, the prepreg has more toughness.
Abstract:
The present invention provides a process for preparing a light transmissive electromagnetic wave shielding material having an excellent light transmissive property, an excellent electromagnetic wave shielding property, an excellent appearance property and an excellent legibility by a simple method.A process for the preparation of a light transmissive electromagnetic wave shielding material comprising; (A1) printing a pretreatment agent for electroless plating comprising a noble metal compound and a mixture of silane coupling agent and azole compound or a reaction product thereof in a mesh pattern on a transparent substrate 11 to form a mesh-patterned pretreatment layer 12, and (A2) subjecting the pretreatment layer 12 to electroless plating to form a mesh-patterned metal conductive layer 13 on the pretreatment layer 12.
Abstract:
A COF which can effectively dissipate the heat by using a simple structure and its manufacturing method. A semiconductor device of COF, which is formed over the main surface of a flexible substrate having no device hole and where a semiconductor chip is mounted over the inner lead interconnection, is characterized by forming a first resin layer over the second main surface of the flexible substrate opposite the side where the semiconductor chip is mounted and at the position corresponding to the semiconductor chip.