Abstract:
Disclosed herein are a printed circuit board and a process of manufacturing the printed circuit board. The printed circuit board includes an insulating layer, and circuit layers disposed at both sides of the insulating layer, each of the circuit layers including a land part and a pattern part. The land parts formed on both sides of the insulating layer are coupled to each other using electrical resistance welding. There is no need for a separate interlayer connection structure such as vias or bumps and a process of forming the interlayer connection structure, thus simplifying the printed circuit board and the process.
Abstract:
Disclosed is a method of manufacturing a hybrid structure of multi-layer substrates. The method comprises steps of: separating a border district of at least one metal layer connecting with a border district of the corresponding dielectric layer from adjacent metal layers and adjacent dielectric layers for each multi-layer substrate and connecting a separated border of a metal layer of one multi-layer substrate with a separated border district of a metal layer of another multi-layer substrate to form a connection section. The hybrid structure comprises at least a first multi-layer substrate and a second multi-layer substrate. At least one first metal layer is connected with at least one second metal layer to form a connection section.
Abstract:
An inclined peripheral portion 103 having a tapered shape in a cross-sectional view, in which the thickness thereof is reduced toward the edge of an interconnection substrate 102, is provided at the edge of the interconnection substrate 102. In addition, inner layers 112 are provided such that the distance therebetween is reduced toward the edge of the interconnection substrate in the inclined peripheral portion 103. A first interconnection conductor 104 and a second interconnection conductor 105 are provided on both inclined planes of the inclined peripheral portion 103 so as to be electrically connected to each other at the leading end of the inclined peripheral portion 103.
Abstract:
In a method for manufacturing a ceramic multilayer substrate, when a green ceramic stack prepared by stacking a plurality of ceramic green sheets is fired simultaneously with a ceramic chip electronic component disposed inside the green ceramic stack and including an external terminal electrode to produce a ceramic multilayer substrate having the ceramic chip electronic component inside, a paste layer is disposed in advance between the ceramic chip electronic component and the green ceramic stack, and these three are fired.
Abstract:
A flexible printed circuit used for being disposed between a frame and a conductive casing of a liquid crystal module is provided. The frame includes a main plate and a side plate which is connected to a side of the main plate. The flexible printed circuit includes a body and a grounding portion. The body is used for being disposed on the main plate of the frame. The grounding portion extends from the body. The grounding portion is bent to a predetermined angle with respect to the body, so that the grounding portion is disposed on the side plate of the frame. The grounding portion has a metal layer contacting an inner wall of a side plate of the conductive casing. The flexible printed circuit has a hole located at the position where the grounding portion is connected the body.
Abstract:
A circuit board may include first and second sides, a plurality of circuit board layers between the sides, and a plurality of signal traces located in respective circuit board layers. The circuit board layers and the signal traces may extend from a first component connection region at the first side of the circuit board to a second component connection region at the first side of the circuit board. The signal traces may thus form stubless signal paths through the circuit board between the component connection regions. Of course, many alternatives, variations, and modifications are possible without departing from this embodiment.
Abstract:
An electronic component mounting structure includes a flexible circuit board having terminal connection patterns formed thereon and a light-emitting component provided with electrodes. The light-emitting component is placed on the flexible circuit board, and a synthetic resin casing is injection-molded to cover the light-emitting component and a portion of the flexible circuit board surrounding the light-emitting component placed thereon, whereby the electrodes of the light-emitting component and the terminal connection patterns of the flexible circuit board are connected in abutting contact with each other.
Abstract:
An electronic device includes a multilayer circuit board having a non-planar three-dimensional shape defining a membrane switch recess therein. The multilayer circuit board may include at least one liquid crystal polymer (LCP) layer, and at least one electrically conductive pattern layer thereon defining at least one membrane switch electrode adjacent the membrane switch recess to define a membrane switch. The electronic may further include a compressible dielectric material filling the membrane switch recess. The electronic device may also include at least one spring member within the membrane switch recess.
Abstract:
A laser beam direct imaging apparatus and an imaging method which can precisely determine a back-surface-side position with respect to a front-surface-side position even if any kind of photosensitive material is used. In the laser direct imaging apparatus, a laser beam is deflected toward a main scanning direction (X-axis direction) while a workpiece mounted on a table is moved in a sub-scanning direction (Y-axis direction) so that a pattern is imaged on the surface of the workpiece. Hollow pins are disposed on the table so that the tips of the hollow pins 20 project over the surface of the table by a predetermined distance. The workpiece is sucked onto the table so that indentations (indentations by the tips of the hollow pins) are formed on the back surface of the workpiece. When a pattern is imaged on the back surface, imaging is performed with reference to the indentations.
Abstract:
A wiring board and method of forming the wiring board. The wiring board includes a first substrate, and a second substrate having a smaller mounting area than a mounting area of the first substrate. A base substrate is laminated between the first substrate and the second substrate such that the first substrate extends beyond an edge of the second substrate, and at least one via formed in at least one of the first substrate or the second substrate. A thickness of a portion of the base substrate that is sandwiched between the first substrate and the second substrate is greater than a thickness of a portion of the base substrate that is not sandwiched between the first substrate and the second substrate.