Abstract:
A transportation device is provided having multiple sensors configured to detect and measure different parameters of interest. The transportation device includes at least one monolithic integrated multi-sensor (MIMS) device. The MIMS device comprises at least two sensors of different types formed on a common semiconductor substrate. For example, the MIMS device can comprise an indirect sensor and a direct sensor. The transportation device couples a first parameter to be measured directly to the direct sensor. Conversely, the transportation device can couple a second parameter to be measured to the indirect sensor indirectly. Other sensors can be added to the transportation device by stacking a sensor to the MIMS device or to another substrate coupled to the MIMS device. This supports integrating multiple sensors such as a microphone, an accelerometer, and a temperature sensor to reduce cost, complexity, simplify assembly, while increasing performance.
Abstract:
A MEMS device is disclosed. The MEMS device comprises a first plate with a first surface and a second surface; and an anchor attached to a first substrate. The MEMS device further includes a second plate with a third surface and a fourth surface attached to the first plate. A linkage connects the anchor to the first plate, wherein the first plate and second plate are displaced in the presence of an acoustic pressure differential between the first and second surfaces of the first plate. The first plate, second plate, linkage, and anchor are all contained in an enclosure formed by the first substrate and a second substrate, wherein one of the first and second substrates contains a through opening to expose the first surface of the first plate to the environment.
Abstract:
A MEMS transducer has a micromechanical sensing structure and a package. The package is provided with a substrate, carrying first electrical-connection elements, and with a lid, coupled to the substrate to define an internal cavity, in which the micromechanical sensing structure is housed. The lid is formed by: a cap layer having a first surface and a second surface, set opposite to one another, the first surface defining an external face of the package and the second surface facing the substrate inside the package; and a wall structure, set between the cap layer and the substrate, and having a coupling face coupled to the substrate. At least a first electrical component is coupled to the second surface of the cap layer, inside the package, and the coupling face of the wall structure carries second electrical-connection elements, electrically connected to the first electrical component and to the first electrical-connection elements.
Abstract:
A method for the manufacture of a package encasing a Micro-Electro-Mechanical Systems (MEMS) device provides a cover having a lid and sidewalls with a port extending through the lid. A first base component is bonded to the sidewalls defining an internal cavity. This first base component further includes an aperture extending therethrough. The MEMS device is inserted through the aperture and bonded to the lid with the MEMS device at least partially overlapping the port. Assembly is completed by bonding a second base component to the first base component to seal the aperture. The package so formed has a cover with a lid, sidewalls and a port extending through the lid. A MEMS device is bonded to the lid and electrically interconnected to electrically conductive features disposed on the first base component. A second base component is bonded to the first base component spanning the aperture.
Abstract:
A method and apparatus for detecting underwater sounds is disclosed. An embodiment of the apparatus includes a substrate with a vacuum-sealed cavity. A support structure and an acoustic pressure sensor are situated on the substrate. The support structure of the apparatus may include a first oxide layer situated on the substrate, a silicon layer situated on the first oxide layer, and a second oxide layer situated on the silicon layer. The acoustic pressure sensor of the apparatus includes a first electrode layer situated on the substrate, a piezoelectric layer situated on the first electrode layer, and a second electrode layer situated on the piezoelectric layer. In one embodiment, the surface area of the second electrode layer is between about 70 to 90 percent of the surface area of the piezoelectric layer. In various embodiments, the support structure is thicker than the piezoelectric layer.
Abstract:
In various embodiments, a method for manufacturing a chip package is provided. The method includes arranging a chip over a substrate, the chip including a microphone structure and an opening to the microphone structure; and encapsulating the chip with encapsulation material such that the opening is kept at least partially free from the encapsulation material.
Abstract:
A monolithically integrated MEMS and CMOS substrates provided by an IC-foundry compatible process. The CMOS substrate is completed first using standard IC processes. A diaphragm with stress relief corrugated structure is then fabricated on top of the CMOS. Air vent holes are then etched in the CMOS substrate. Finally, the microphone device is encapsulated by a thick insulating layer at the wafer level. The monolithically integrated microphone that adopts IC foundry-compatible processes yields the highest performance, smallest form factor, and lowest cost. Using this architecture and fabrication flow, it is feasible and cost-effective to make an array of Silicon microphones for noise cancellation, beam forming, better directionality and fidelity.
Abstract:
A computer implemented method of virtual machine migration with filtered network connectivity includes enforcing network security and routing at a hypervisor layer which is independent of guest operating systems via dynamic updating of routing controls initiated by a migration of said virtual machine from a first device to a second device.
Abstract:
The present invention relates to a surface mount package for a silicon condenser microphone and methods for manufacturing the surface mount package. The surface mount package uses a limited number of components which simplifies manufacturing and lowers costs, and features a substrate that performs functions for which multiple components were traditionally required, including providing an interior surface on which the silicon condenser die is mechanically attached, providing an interior surface for making electrical connections between the silicon condenser die and the package, and providing an exterior surface for surface mounting the package to a device's printed circuit board and for making electrical connections between package and the device's printed circuit board.
Abstract:
Provided are a micro-electromechanical systems (MEMS) microphone and a method of manufacturing the same. A manufacturing process is simplified compared to a conventional art using both upper and lower substrate processes. Since defects which may occur during manufacturing are reduced due to the simplified manufacturing process, the manufacturing throughput is improved, and since durability of the MEMS microphone is improved, system stability against the external environment is improved.