Abstract:
A surfactant composition selected from the group consisting of: ArO—(CH2CH[CH2CH3]O)1-10(CH2CH2O)5-50H, isomers, aromatic ring substituted analogues, and mixtures thereof; and an aqueous coating composition including an aqueous polymeric dispersion, and certain other compositions, including the surfactant composition are provided. Also provided are a method for forming a coating and a method for improving the freeze/thaw stability of an aqueous composition including an aqueous polymeric dispersion.
Abstract:
A surface having dust particles thereon and a coating on the surface comprising a coating polymer having a Tg less than −20° C. A method of reducing dust, the method including providing a surface having dust particles thereon and coating the surface with a coating polymer with a Tg less than −20° C.
Abstract:
The present invention provides for a resin mixture that comprises a highly structured resin 40 and a less structured resin 50. The highly structured resin 40 and the less structured resin 50 are mixed to a ratio of between 1:9 and 4:1 by volume, with a more particular ratio of 1:5 to 3:1. The highly structured resin forms ordered micro regions and the ordered micro regions impose order on surrounding less structured resin molecules. The micro regions are essentially groups of the HS resin that will naturally form order structures.
Abstract:
Disclosed is a method of making reduced VOC polymers and coating compositions containing such polymers. Provided is a mixture (I) comprising a reactant mixture (a) of polymerizable components and a nonvolatile solvent (bnv) that (i) is not a crystalline solid at 25° C., (ii) is nonvolatile, (iii) comprises at least one functional group (F1) and (iv) is a fluid solid. Reactant mixture (a) is polymerized to provide a polymer (a′). The at least one functional group (F1) of nonvolatile solvent (bnv) is reacted with one or more reactants (e) to obtain a nonvolatile solvent (b′nv) comprising at least two functional groups (F2). Obtained is a mixture (II) comprising polymer (a′) in nonvolatile solvent (b′nv) comprising at least two functional groups (F2). The at least one functional group (F1) is substantially nonreactive: (1) with the components of reactive mixture (a), (2) under the polymerization conditions which polymerize reactant mixture (a), and (3) with polymer (a′).
Abstract:
The mechanical properties of a polymer protective coating formed from an aqueous dispersion of a polymer having a low glass transition temperature are significantly improved by including in the dispersion solvent softened polymer nanoparticles made from a polymer having a high glass transition temperature.
Abstract:
The invention provides curable waterborne coating compositions comprising an aqueous dispersion (A) comprising an organic binder component (A1) comprising at least 5% by weight of a reactive component (a), based on the total weight of organic binder component (A1), and at least one crosslinking component (B). The reactive component (a) is substantially free of any heteratoms and is a not a crystalline solid at room temperature and comprises from (i) 12 to 72 carbon atoms, and (ii) at least two functional groups. The curable waterborne coating compositions of the invention show significantly improved pop resistance while also providing improved chip resistance, weathering resistance, flexibility, and/or scratch & mar resistance.
Abstract:
Disclosed is a method of making reduced VOC polymers and coating compositions containing such polymers. Provided is a mixture (I) comprising a reactant mixture (a) of polymerizable components and a nonvolatile solvent (bnv) that (i) is not a crystalline solid at 25null C., (ii) is nonvolatile, (iii) comprises at least one functional group (F1) and (iv) is a fluid solid. Reactant mixture (a) is polymerized to provide a polymer (anull). The at least one functional group (F1) of nonvolatile solvent (bnv) is reacted with one or more reactants (e) to obtain a nonvolatile solvent (bnullnv) comprising at least two functional groups (F2). Obtained is a mixture (II) comprising polymer (anull) in nonvolatile solvent (bnullnv) comprising at least two functional groups (F2). The at least one functional group (F1) is substantially nonreactive: (1) with the components of reactive mixture (a), (2) under the polymerization conditions which polymerize reactant mixture (a), and (3) with polymer (anull).
Abstract:
Carboxyalkylcellulose esters are disclosed having relatively low degrees of polymerization. These new carboxyalkylcellulose esters include carboxymethylcellulose acetate, carboxymethylcellulose acetate propionate, and carboxymethylcellulose acetate butyrate. The inventive esters exhibit solubility in a range of organic solvents, and are useful in coatings and ink compositions as binder resins and rheology modifiers.
Abstract:
A grinding paint has 30% to 45% of a copolymer of melamine, sulphonamide and formaldehyde, 30% to 45% of a resin, 20% to 30% of a solvent, 1% to 3% of a transparent paint, and 0.5% to 1.5% of an assistant agent. The resin is selected from a group consisting of epoxy resin, alkyd resin, amino-compound resin, and acrylic resin. The solvent is selected from a group consisting of alcohols, ketones, and aromatic compounds. The transparent paint is a metal-containing powder dissolved in the solvent to form a transparent liquid. The assistant agent is a silicon-containing liquid. The grinding paint is painted on a decoration bulb by spraying, dipping or showering to form a base coating layer on the decoration bulb. The base coating layer is baked at 150null C. to 250null C. for approximately ten to fifteen minutes.
Abstract:
The present invention relates to a water-based metallic coating composition comprising a resin composition for a water-based coating composition, a metallic pigment, metal silicate and a polyamide resin and capable of forming a coating film which is excellent in a flip-flop property and which is free of metallic mottling.