Abstract:
Methods and systems for providing crosstalk compensation in a jack are disclosed. According to one method, the crosstalk compensation is adapted to compensate for undesired crosstalk generated at a capacitive coupling located at a plug inserted within the jack. The method includes positioning a first capacitive coupling a first time delay away from the capacitive coupling of the plug, the first capacitive coupling having a greater magnitude and an opposite polarity as compared to the capacitive coupling of the plug. The method also includes positioning a second capacitive coupling at a second time delay from the first capacitive coupling, the second time delay corresponding to an average time delay that optimizes near end crosstalk. The second capacitive coupling has generally the same overall magnitude but an opposite polarity as compared to the first capacitive coupling, and includes two capacitive elements spaced at different time delays from the first capacitive coupling.
Abstract:
A multi-layered circuit board includes a first insulating layer, a second insulating layer, and a sheet capacitor that is located between the first insulating layer and the second insulating layer. The sheet capacitor includes a pair of electrodes that sandwich a dielectric. Lead wirings continue to the electrodes, respectively. The lead wirings are disposed on an opposite side of the first or the second insulating layer with respect to the sheet capacitor to overlap the electrodes when viewed from a stacking direction of the multi-layered circuit board. Because the lead wirings are arranged to overlap the electrodes in the stacking direction of the multi-layered circuit board, an ESL of the sheet capacitor is maintained low.
Abstract:
Coil conductor patterns CP31 to CP34 and CP41 to CP44 are formed to be close to an outermost layer of a multilayer body. The coil conductor patterns CP31 and CP41 are connected by via hole conductors VH111b and VH111c, the coil conductor patterns CP32 and CP42 are connected by via hole conductors VH112b and VH112c, the coil conductor patterns CP33 and CP43 are connected by via hole conductors VH113b and VH113c, and the coil conductor patterns CP34 and CP44 are connected by via hole conductors VH114b and VH114c. Coil conductor patterns CP101 to CP104 and CP111 to CP114 formed to be close to the other outermost layer of the multilayer body are also connected in the same manner.
Abstract:
An electronic isolation device is formed on a monolithic substrate and includes a plurality of passive isolation components. The isolation components are formed in three metal levels. The first metal level is separated from the monolithic substrate by an inorganic PMD layer. The second metal level is separated from the first metal level by a layer of silicon dioxide. The third metal level is separated from the second metal level by at least 20 microns of polyimide or PBO. The isolation components include bondpads on the third metal level for connections to other devices. A dielectric layer is formed over the third metal level, exposing the bondpads. The isolation device contains no transistors.
Abstract:
A coil component includes coil conductors having a multilayer structure including via pads, and vias connected between the via pads on the respective layers. Portions or overall regions of the via pads on two layers which are adjacent to each other overlap each other, and the vias in two layers which are connected to each other by the via pad formed therebetween are disposed in alternating positions.
Abstract:
A signal transmission system including: a first connector apparatus, and a second connector apparatus that is coupled with the first connector apparatus. The first connector apparatus and the second connector apparatus are coupled together to form an electromagnetic field coupling unit, and a transmission object signal is converted into a radio signal, which is then transmitted through the electromagnetic field coupling unit, between the first connector apparatus and the second connector apparatus.
Abstract:
Methods and systems for providing crosstalk compensation in a jack are disclosed. According to one method, the crosstalk compensation is adapted to compensate for undesired crosstalk generated at a capacitive coupling located at a plug inserted within the jack. The method includes positioning a first capacitive coupling a first time delay away from the capacitive coupling of the plug, the first capacitive coupling having a greater magnitude and an opposite polarity as compared to the capacitive coupling of the plug. The method also includes positioning a second capacitive coupling at a second time delay from the first capacitive coupling, the second time delay corresponding to an average time delay that optimizes near end crosstalk. The second capacitive coupling has generally the same overall magnitude but an opposite polarity as compared to the first capacitive coupling, and includes two capacitive elements spaced at different time delays from the first capacitive coupling.
Abstract:
A high-frequency signal transmission line includes a body including a plurality of first base layers and a second base layer stacked on one another in a stacking direction. The first base layers have a first relative permeability, and the second base layer has a relative permeability lower than the first relative permeability. A first signal line and a second signal line extending along the first signal line are provided in the body. In a cross section perpendicular or substantially perpendicular to a first direction in which the first signal line extends, the second base layer occupies at least a portion of an area between the first signal line and the second signal line. In the cross section perpendicular or substantially perpendicular to the first direction, the plurality of first base layers define a loop enclosing the first signal line, the second signal line and the second base layer.
Abstract:
A circuit component is described herein. The circuit component includes a first signal line to propagate in a first direction and a second signal line to propagate a second direction. The circuit component includes a region to introduce crosstalk within the region that reduces another crosstalk generated at a location remote from the region based on a change in propagation direction of the first signal line and second signal line.
Abstract:
An electrically conductive element, including an insulator and a first conductor, is provided, which can be affixed to a second conductor consisting of conductive structural element, wherein the insulator is positioned between the first and second conductors to electrically isolate them. A power supply may be connected between the first and second conductors to provide power thereto, and an electrical device may be connected across the first and second conductors.