Abstract:
Structure and method of making a board having plating though hole (PTH) core layer substrate and stacked multiple layers of blind vias. More stacking layers of blind vias than conventional methods can be achieved. The fabrication method of the board having high-density core layer includes the following: after the making of the PTH, the filling material filled inside the PTH of the core layer is partially removed until the PTH has reached an appropriate flattened depression using etching; then image transfer and pattern plating are performed to fill and to level the depression portion up to a desired thickness to form a copper pad (overplating) as the core layer substrate is forming a circuit layer; finally using electroless copper deposition and the pattern plating to make the product.
Abstract:
A method for fabricating a circuit trace on a core board having a buried hole is provided. The method includes: providing a carrier plate having a detachable metal layer, an etching barrier layer, and a metal layer sequentially stacked thereon; roughening the metal layer which can be completely roughened; laminating the bonded metal layer, the etching barrier layer, the detachable metal layer and the carrier plate onto a dielectric, wherein the metal layer faces and contacts with the dielectric; and then removing the carrier plate therefrom. As such, even if the dielectric is difficult to be completely roughened, the roughened metal layer can enhance the bondability between the metal layer and the dielectric. The metal layer is processed to become the circuit trace later.
Abstract:
A manufacturing method of a non-etched circuit board is disclosed herein, which employs a metal substrate having a metal barrier layer and an electroplated copper layer to transmit an electrical current to form a circuit layer. A patterned photoresist layer is formed on the electroplated copper layer to define the location of the circuit layer and form circuits or conductive via on the board by electroplating. An electroplated nickel layer or an electroplated gold layer is further formed on the circuit layer for protecting the circuits and improving the fine line capability. During or after the process, the metal substrate, the metal barrier layer, and the electroplated copper layer are removed to enlarge the wiring space, so that a high-density circuit board can be obtained.
Abstract:
A method of fabricating circuitry without conductive circles has steps of providing a plate with multiple apertures defined therein, the plate and inner walls of the apertures are coated with a copper layer; the copper layers are coated with a photoresist layer, which is then covered with a protective film; partly removing the photoresist layer at the apertures; removing the protective film to expose the photoresist layer; electroplating the inner walls of the apertures with copper; exposing and developing the photoresist layers; and finally, etching the copper layers to form a circuit pattern without any conductive circles.
Abstract:
A composite circuit board comprises multiple soft panels evenly mounted on a rigid panel. The soft panels are positioned on the rigid panel in proper alignment via locating pins on the rigid panel and corresponding holes in the soft panels. The soft panels are securely bonded to the rigid panel to form the composite circuit boards. The smaller size of the soft panels minimizes the alignment problems caused by the different heat expansion rates of the soft panel and the rigid panel.
Abstract:
A light emitting diode device comprises a copper substrate having multiple light emitting regions, multiple dies and encapsulation. Each light emitting region has a die pad and at least one electrode connected together and encapsulant covering the light emitting region. The dies are respectively mounted on the die pads and are wire bonded to the corresponding electrode or electrodes. A step defining a gap is applied to the substrate to form multiple light emitting regions, and each light emitting region has a die pad and electrodes. Therefore, the present invention can simplify the steps for fabricating die pad and electrodes to increase the production rate of LED devices or LED display modules.
Abstract:
The present invention relates to a TF-BGA method for manufacturing a packaging substrate, and includes steps of forming a single-sided circuit on a copper plate by electroplating, removing a layer of photoresist and sequentially laminating a dielectric layer and a metal plate on the copper plate, etching the copper plate, selectively applying a layer of solder resist, defining a cavity opening by punching, routing or etching, attaching a heat sink, forming dam rings and protecting the laminate by mold compound, attaching a die and bonding gold wires and encapsulating the cavity opening by encapsulate and attaching solder balls. In particular, a metal plate substitutes for a BT resin material to achieve low packaging cost and increasing the heat dissipating efficiency. A transfer flat type ball grid array method is employed to achieve an effect of fine circuitry and each single substrate is processed and tested individually. After the defective substrate units have been removed, the substrate units proved to be good are arranged in a long strip form and the borders thereof are molded to link in a latitudinal extension shape. A problem of the conventional entire strip of substrate set becoming useless when part of the substrate units are defective can be eliminated.
Abstract:
A BGA packaging method for an IC includes steps of providing a first dry film to a copper plate, plating nickel-copper to form circuits on one side of the copper plate, providing a second dry film, selectively plating nickel-gold, removing the dry films, providing an insulating layer, providing a back plate, attaching a chip, wire bonding, encapsulating the chip and wires with plastic, etching copper, providing solder resist and attaching solder balls. By this method, a packaged IC with excellent electrical characteristics and heat dissipation can be obtained through a simple procedure.
Abstract:
A manufacturing method of a semiconductor load board is disclosed. The manufacturing method includes a first conductive layer forming step, a first patterning step, a dielectric layer forming step, a drilling step, a second conductive layer forming step, a second patterning step or a two-times patterning step, and a solder connecting step. In a second patterning step or a two-times patterning step, a solder pad is formed in the opening of the dielectric layer, wherein each solder pad has a height higher than the height of the dielectric, and the width of each solder pad is equal to or smaller than the maximum width of the opening, such that wider intervals are provided in the same area and the problems of short circuit failure and electrical interference can be reduced.
Abstract:
A method for manufacturing a heat dissipation structure of a printed circuit board includes: forming a barrier layer on the dimple in the first copper plating layer; forming a nickel plating layer; removing the nickel plating layer and the barrier layer on the dimple; forming a second copper plating layer to make the total height of the first copper plating layer and the second copper plating layer in the second opening higher than that of the first copper plating layer in the first opening; filling the dimple in the second copper plating layer with an etching-resistant material; removing the second copper plating layer; removing the nickel plating layer and the etching-resistant material to make the second copper plating layer in the second opening being at the same height as the first copper plating layer in the first opening; and forming the heat dissipation structure by photolithography.