Abstract:
Processes disclosed are capable of converting biomass into high-crystallinity nanocellulose with low mechanical energy input. In some variations, the process includes fractionating biomass with sulfur dioxide or a sulfite compound and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; and mechanically treating the cellulose-rich solids to form nanofibrils and/or nanocrystals. The total mechanical energy may be less than 500 kilowatt-hours per ton. The crystallinity of the nanocellulose material may be 80% or higher, translating into good reinforcing properties for composites. The nanocellulose material may include nanofibrillated cellulose, nanocrystalline cellulose, or both. In some embodiments, the nanocellulose material is hydrophobic via deposition of some lignin onto the cellulose surface. Optionally, sugars derived from amorphous cellulose and hemicellulose may be separately fermented, such as to monomers for various polymers. These polymers may be combined with the nanocellulose to form completely renewable composites.
Abstract:
Some variations provide a process for producing cellulosic fructose from biomass, comprising: fractionating a biomass feedstock in the presence of an acid catalyst, a solvent for lignin, and water, to produce a liquor containing cellulose-rich solids, lignin, and dissolved hemicellulose; removing the cellulose-rich solids from the liquor; hydrolyzing the dissolved hemicellulose contained in the liquor, to produce a hydrolyzed liquor comprising hemicellulosic monomers; hydrolyzing the cellulose-rich solids to produce glucose, using cellulase enzymes or an acid or base hydrolysis catalyst; enzymatically isomerizing the glucose to fructose, using glucose isomerase enzymes; and recovering the fructose in purified form or in a fructose-glucose solution. The cellulosic fructose produced by the disclosed processes has many uses.
Abstract:
Processes disclosed are capable of converting biomass into high-crystallinity nanocellulose with surprisingly low mechanical energy input. In some variations, the process includes fractionating biomass with an acid (such as sulfur dioxide), a solvent (such as ethanol), and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; and mechanically treating the cellulose-rich solids to form nanofibrils and/or nanocrystals. The total mechanical energy may be less than 500 kilowatt-hours per ton. The crystallinity of the nanocellulose material may be 80% or higher, translating into good reinforcing properties for composites. The nanocellulose material may include nanofibrillated cellulose, nanocrystalline cellulose, or both. In some embodiments, the nanocellulose material is hydrophobic via deposition of some lignin onto the cellulose surface. Optionally, sugars derived from amorphous cellulose and hemicellulose may be separately fermented, such as to monomers for various polymers. These polymers may be combined with the nanocellulose to form completely renewable composites.
Abstract:
Processes disclosed are capable of converting biomass into high-crystallinity nanocellulose with low mechanical energy input. In some variations, the process includes fractionating biomass with sulfur dioxide or a sulfite compound and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; and mechanically treating the cellulose-rich solids to form nanofibrils and/or nanocrystals. The total mechanical energy may be less than 500 kilowatt-hours per ton. The crystallinity of the nanocellulose material may be 80% or higher, translating into good reinforcing properties for composites. The nanocellulose material may include nanofibrillated cellulose, nanocrystalline cellulose, or both. In some embodiments, the nanocellulose material is hydrophobic via deposition of some lignin onto the cellulose surface. Optionally, sugars derived from amorphous cellulose and hemicellulose may be separately fermented, such as to monomers for various polymers. These polymers may be combined with the nanocellulose to form completely renewable composites.
Abstract:
Processes disclosed are capable of converting biomass into high-crystallinity nanocellulose with surprisingly low mechanical energy input. In some variations, the process includes fractionating biomass with an acid (such as sulfur dioxide), a solvent (such as ethanol), and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; and mechanically treating the cellulose-rich solids to form nanofibrils and/or nanocrystals. The crystallinity of the nanocellulose material may be 80% or higher, translating into good reinforcing properties for composites. The nanocellulose material may include nanofibrillated cellulose, nanocrystalline cellulose, or both. In some embodiments, the nanocellulose material is hydrophobic via deposition of some lignin onto the cellulose surface. Optionally, sugars derived from amorphous cellulose and hemicellulose may be separately fermented, such as to monomers for various polymers. These polymers may be combined with the nanocellulose to form completely renewable composites.
Abstract:
In some variations, the invention provides a process for producing furfural, 5-hydroxymethylfurfural, and/or levulinic acid from cellulosic biomass, comprising: fractionating the feedstock in the presence of a solvent for lignin, sulfur dioxide, and water, to produce a liquor containing hemicellulose, cellulose-rich solids, and lignin; hydrolyzing the hemicellulose contained in the liquor, to produce hemicellulosic monomers; dehydrating the hemicellulose to convert at least a portion of C5 hemicelluloses to furfural and to convert at least a portion of C6 hemicelluloses to 5-hydroxymethylfurfural; converting at least some of the 5-hydroxymethylfurfural to levulinic acid and formic acid; and recovering at least one of the furfural, the 5-hydroxymethylfurfural, or the levulinic acid. Other embodiments provide a process for dehydrating hemicellulose to convert oligomeric C5 hemicelluloses to furfural and to convert oligomeric C6 hemicelluloses to 5-hydroxymethylfurfural. The furfural may be converted to succinic acid, or to levulinic acid, for example.
Abstract:
Processes disclosed are capable of converting biomass into high-crystallinity nanocellulose with low mechanical energy input. In some variations, the process includes fractionating biomass with lignosulfonic acids, to generate cellulose-rich solids; and mechanically treating the cellulose-rich solids to form nanofibrils and/or nanocrystals. The strong lignosulfonic acids created during delignification give a pH less than 1 and hydrolyze preferentially the amorphous regions of cellulose. The total mechanical energy may be less than 500 kilowatt-hours per ton. The crystallinity of the nanocellulose material may be 80% or higher, translating into good reinforcing properties for composites. The nanocellulose material may include nanofibrillated cellulose, nanocrystalline cellulose, or both. In some embodiments, the nanocellulose material is hydrophobic via deposition of lignin onto the cellulose surface. Optionally, sugars derived from amorphous cellulose and hemicellulose may be separately fermented to co-products.
Abstract:
Processes disclosed are capable of converting biomass into high-crystallinity, hydrophobic cellulose. In some variations, the process includes fractionating biomass with an acid (such as sulfur dioxide), a solvent (such as ethanol), and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; and depositing lignin onto cellulose fibers to produce lignin-coated cellulose materials (such as dissolving pulp). The crystallinity of the cellulose material may be 80% or higher, translating into good reinforcing properties for composites. Optionally, sugars derived from amorphous cellulose and hemicellulose may be separately fermented, such as to monomers for various polymers. These polymers may be combined with the hydrophobic cellulose to form completely renewable composites.
Abstract:
Processes disclosed are capable of converting biomass into high-crystallinity nanocellulose with low mechanical energy input. In some variations, the process includes fractionating biomass with lignosulfonic acids, to generate cellulose-rich solids; and mechanically treating the cellulose-rich solids to form nanofibrils and/or nanocrystals. The strong lignosulfonic acids created during delignification give a pH less than 1 and hydrolyze preferentially the amorphous regions of cellulose. The total mechanical energy may be less than 500 kilowatt-hours per ton. The crystallinity of the nanocellulose material may be 80% or higher, translating into good reinforcing properties for composites. The nanocellulose material may include nanofibrillated cellulose, nanocrystalline cellulose, or both. In some embodiments, the nanocellulose material is hydrophobic via deposition of lignin onto the cellulose surface. Optionally, sugars derived from amorphous cellulose and hemicellulose may be separately fermented to co-products.
Abstract:
Processes disclosed are capable of converting biomass into high-crystallinity nanocellulose with low mechanical energy input. In some variations, the process includes fractionating biomass with sulfur dioxide or a sulfite compound and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; and mechanically treating the cellulose-rich solids to form nanofibrils and/or nanocrystals. The total mechanical energy may be less than 500 kilowatt-hours per ton. The crystallinity of the nanocellulose material may be 80% or higher, translating into good reinforcing properties for composites. The nanocellulose material may include nanofibrillated cellulose, nanocrystalline cellulose, or both. In some embodiments, the nanocellulose material is hydrophobic via deposition of some lignin onto the cellulose surface. Optionally, sugars derived from amorphous cellulose and hemicellulose may be separately fermented, such as to monomers for various polymers. These polymers may be combined with the nanocellulose to form completely renewable composites.